Skip to main content

Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 194))

Abstract

Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semi-classical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperatures. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.opencascade.com.

  2. 2.

    www.pythonocc.org.

References

  1. P. Bhattacharya, Z. Mi, Proc. IEEE 95(9), 1723 (2007). https://doi.org/10.1109/JPROC.2007.900897

    Article  Google Scholar 

  2. P. Michler (ed.), in Single Semiconductor Quantum Dots. NanoScience and Technology (Springer, Berlin, Heidelberg, 2009). https://doi.org/10.1007/978-3-540-87446-1

    Google Scholar 

  3. D. Bimberg, U.W. Pohl, Mater. Today 14(9), 388 (2011). https://doi.org/10.1016/S1369-7021(11)70183-3

    Article  Google Scholar 

  4. P. Lodahl, S. Mahmoodian, S. Stobbe, Rev. Mod. Phys. 87(2), 347 (2015). https://doi.org/10.1103/revmodphys.87.347

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Michler (ed.), in Quantum Dots for Quantum Information Technologies. Springer Series in Nano-Optics and Nanophotonics (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-56378-7

    MATH  Google Scholar 

  6. M. Streiff, A. Witzig, M. Pfeiffer, P. Royo, W. Fichtner, IEEE J. Sel. Top. Quantum Electron. 9, 879 (2003). https://doi.org/10.1109/JSTQE.2003.818858

    Article  ADS  Google Scholar 

  7. U. Bandelow, H. Gajewski, R. Hünlich, in Optoelectronic Devices, ed. by J. Piprek (Springer, New York, 2005), Chap. 3, pp. 63–85. https://doi.org/10.1007/0-387-27256-9_3

  8. H. Wenzel, P. Crump, H. Ekhteraei, C. Schultz, J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, G. Erbert, in 2011 11th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2011), p. 143. https://doi.org/10.1109/nusod.2011.6041183

  9. J. Pomplun, H. Wenzel, S. Burger, L. Zschiedrich, M. Rozova, F. Schmidt, P. Crump, H. Ekhteraei, C.M. Schultz, G. Erbert, Proc. SPIE 8255, 825510 (2012). https://doi.org/10.1117/12.909330

  10. W.W. van Roosbroeck, Bell Syst. Tech. J. 29(4), 560 (1950). https://doi.org/10.1002/j.1538-7305.1950.tb03653.x

    Article  MATH  Google Scholar 

  11. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Vienna, 1984). https://doi.org/10.1007/978-3-7091-8752-4

    Book  Google Scholar 

  12. M. Kantner, T. Koprucki, Opt. Quantum. Electron. 48(12), 543 (2016). https://doi.org/10.1007/s11082-016-0817-2

  13. M. Kantner, Modeling and simulation of electrically driven quantum dot based single-photon sources: From classical device physics to open quantum systems. Ph.D. thesis, Technical University Berlin, Berlin (2018). https://doi.org/10.14279/depositonce-7516

  14. K. Hess, Advanced Theory of Semiconductor Devices, 2nd edn. (Wiley-IEEE Press, New York, 2000). https://doi.org/10.1109/9780470544105

    Book  Google Scholar 

  15. C. Jacoboni, Theory of Electron Transport in Semiconductors (Springer, Berlin, Heidelberg, 2010). https://doi.org/10.1007/978-3-642-10586-9

    Book  Google Scholar 

  16. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981). https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  17. V. Palankovski, R. Quay, Analysis and Simulation of Heterostructure Devices. Series in Computational Microelectronics (Springer, Vienna, 2004). https://doi.org/10.1007/978-3-7091-0560-3

    Book  Google Scholar 

  18. D. Schröder, Modelling of Interface Carrier Transport for Device Simulation. Series in Computational Microelectronics (Springer, Vienna, 1994). https://doi.org/10.1007/978-3-7091-6644-4

    Book  MATH  Google Scholar 

  19. F. Schmidt, in Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers, vol. 2, ed. by J. Piprek (CRC Press, Taylor & Francis Group, Boca Raton, 2017), Chap. Photonics, pp. 807–852. https://doi.org/10.4324/9781315152318-27

    Chapter  Google Scholar 

  20. E.S.C. Ching, P.T. Leung, A.M. van den Brink, W.M. Suen, S.S. Tong, K. Young, Rev. Mod. Phys. 70(4), 1545 (1998). https://doi.org/10.1103/revmodphys.70.1545

    Article  ADS  Google Scholar 

  21. A. Fischer, T. Koprucki, K. Gärtner, M.L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky, R. Scholz, Adv. Funct. Mater. 24(22), 3367 (2014). https://doi.org/10.1002/adfm.201303066

    Article  Google Scholar 

  22. G.K. Wachutka, IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 9(11), 1141 (1990). https://doi.org/10.1109/43.62751

    Article  Google Scholar 

  23. U. Lindefelt, J. Appl. Phys. 75(2), 942 (1994). https://doi.org/10.1063/1.356450

    Article  ADS  Google Scholar 

  24. G. Albinus, H. Gajewski, R. Hünlich, Nonlinearity 15(2), 367 (2002). https://doi.org/10.1088/0951-7715/15/2/307

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Kantner, J. Comput. Phys. 402, 109091 (2020). https://doi.org/10.1016/j.jcp.2019.109091

    Article  MathSciNet  Google Scholar 

  26. L. Onsager, Phys. Rev. 37(4), 405 (1931). https://doi.org/10.1103/PhysRev.37.405

    Article  ADS  MATH  Google Scholar 

  27. M. Grmela, H.C. Öttinger, Phys. Rev. E 56, 6620 (1997). https://doi.org/10.1103/PhysRevE.56.6620

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Mielke, in Recent Trends in Dynamical Systems, ed. by A. Johann, H.P. Kruse, F. Rupp, S. Schmitz, no. 35 in Springer Proceedings in Mathematics & Statistics (Springer, Basel, 2013), Chap. 21, pp. 555–585. https://doi.org/10.1007/978-3-0348-0451-6_21

    Chapter  Google Scholar 

  29. A. Mielke, in Mathematical Results in Quantum Mechanics, ed. by P. Exner, W. König, H. Neidhardt (World Scientific, Singapore, 2015), pp. 331–348. https://doi.org/10.1142/9789814618144_0029

  30. R. Michalzik (ed.), VCSELs–Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer Series in Optical Sciences, vol. 166 (Springer, Berlin, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-24986-0

    Google Scholar 

  31. T. Koprucki, A. Wilms, A. Knorr, U. Bandelow, Opt. Quantum. Electron. 42(11), 777 (2011). https://doi.org/10.1007/s11082-011-9479-2

    Article  Google Scholar 

  32. A. Wilms, P. Mathé, F. Schulze, T. Koprucki, A. Knorr, U. Bandelow, Phys. Rev. B 88, 235421 (2013). https://doi.org/10.1103/PhysRevB.88.235421

  33. M. Kantner, M. Mittnenzweig, T. Koprucki, Phys. Rev. B 96(20), 205301 (2017). https://doi.org/10.1103/PhysRevB.96.205301

  34. M. Kantner, Proc. SPIE 10912, 109120U (2019). https://doi.org/10.1117/12.2515209

  35. M. Kantner, T. Koprucki, H.-J. Wünsche, U. Bandelow, in Proceedings of the 24th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2019), pp. 355–358 (2019). https://doi.org/10.1109/SISPAD.2019.8870459

  36. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  37. W.W. Chow, F. Jahnke, Prog. Quantum Electron. 37(3), 109 (2013). https://doi.org/10.1016/j.pquantelec.2013.04.001

    Article  ADS  Google Scholar 

  38. S. Reitzenstein, A. Forchel, J. Phys. D: Appl. Phys. 43(3), 033001 (2010). https://doi.org/10.1088/0022-3727/43/3/033001

    Article  ADS  Google Scholar 

  39. G.A. Baraff, R.K. Smith, Phys. Rev. A 61(4), 043808 (2000). https://doi.org/10.1103/PhysRevA.61.043808

  40. H. Wenzel, H.J. Wünsche, IEEE J. Quantum Electron. 30(9), 2073 (1994). https://doi.org/10.1109/3.309867

    Article  ADS  Google Scholar 

  41. A. Witzig, Modeling the optical processes in semiconductor lasers. Ph.D. thesis, ETH Zürich, Zürich (2002). https://doi.org/10.3929/ethz-a-004407405

  42. S. Steiger, R.G. Veprek, B. Witzigmann, J. Comput. Electron. 7(4), 509 (2008). https://doi.org/10.1007/s10825-008-0261-z

    Article  Google Scholar 

  43. M. Grupen, K. Hess, IEEE J. Quantum Electron. 34(1), 120 (1998). https://doi.org/10.1109/3.655016

    Article  ADS  Google Scholar 

  44. W.W. Chow, S.W. Koch, IEEE J. Quantum Electron. 41, 495 (2005). https://doi.org/10.1109/JQE.2005.843948

    Article  ADS  Google Scholar 

  45. K. Lüdge, E. Schöll, IEEE J. Quantum Electron. 45(11), 1396 (2009). https://doi.org/10.1109/jqe.2009.2028159

    Article  ADS  Google Scholar 

  46. E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Appl. Phys. Lett. 89(10), 101107 (2006). https://doi.org/10.1063/1.2346224

    Article  ADS  Google Scholar 

  47. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapore, 2004). https://doi.org/10.1142/5394

  48. T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 69, 235314 (2004). https://doi.org/10.1103/PhysRevB.69.235314

  49. A. Wilms, D. Breddermann, P. Mathé, Phys. Status Solidi C 9(5), 1278 (2012). https://doi.org/10.1002/pssc.201100101

    Article  ADS  Google Scholar 

  50. A. Wilms, Coulomb induced interplay of localized and reservoir carriers in semiconductor quantum dots. Ph.D. thesis, Technical University Berlin (2013). https://doi.org/10.14279/depositonce-3530

  51. C. Santori, D. Fattal, Y. Yamamoto, Single-photon Devices and Applications (Wiley, Weinheim, 2010)

    Google Scholar 

  52. S. Buckley, K. Rivoire, J. Vučković, Rep. Prog. Phys. 75(12), 126503 (2012). https://doi.org/10.1088/0034-4885/75/12/126503

    Article  ADS  Google Scholar 

  53. P.I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, S. Burger, Opt. Express 26, 8479 (2018). https://doi.org/10.1364/oe.26.008479

    Article  ADS  Google Scholar 

  54. E.M. Purcell, Phys. Rev. 69, 681 (1946). https://doi.org/10.1007/978-1-4615-1963-8_40

    Chapter  Google Scholar 

  55. D.J. Griffiths, Introduction to Electrodynamics (Cambridge University Press, Cambridge, 2017). https://doi.org/10.1017/9781108333511

  56. M. Kantner, M. Mittnenzweig, T. Koprucki, Proc. SPIE 10526, 1052603 (2018). https://doi.org/10.1117/12.2289185

  57. N. Baer, P. Gartner, F. Jahnke, Eur. Phys. J. B 42(2), 231 (2004). https://doi.org/10.1140/epjb/e2004-00375-6

  58. E. Malić, M.J.P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, IEEE, J. Sel. Top. Quantum Electron. 13(5), 1242 (2007). https://doi.org/10.1109/ISLC.2006.1708081

  59. I. Magnúsdóttir, A.V. Uskov, S. Bischoff, B. Tromborg, J. Mørk, J. Appl. Phys. 92(10), 5982 (2002). https://doi.org/10.1063/1.1512694

    Article  ADS  Google Scholar 

  60. R. Ferreira, G. Bastard, Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots. 2053–2571 (Morgan & Claypool Publishers, San Rafael, CA, 2015). https://doi.org/10.1088/978-1-6817-4089-8

  61. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511976186

  62. M. Kantner, M. Mittnenzweig, A. Mielke, N. Rotundo, in Topics in Applied Analysis and Optimisation, ed. by M. Hintermüller and J. Rodrigues (Springer, Cham, 2019), pp. 269–293. https://doi.org/10.1007/978-3-030-33116-0_11

    Google Scholar 

  63. A. Mielke, Nonlinearity 24, 1329 (2011). https://doi.org/10.1088/0951-7715/24/4/016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. M. Mittnenzweig, A. Mielke, J. Stat. Phys. 167(2), 205 (2017). https://doi.org/10.1007/s10955-017-1756-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. H. Spohn, J. Math. Phys. 19(5), 1227 (1978). https://doi.org/10.1063/1.523789

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. D.L. Scharfetter, H.K. Gummel, IEEE Trans, Electron Dev. 16(1), 64 (1969). https://doi.org/10.1109/t-ed.1969.16566

    Article  ADS  Google Scholar 

  67. P. Farrell, N. Rotundo, D.H. Doan, M. Kantner, J. Fuhrmann, T. Koprucki, in Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods, vol. 2, ed. by J. Piprek (CRC Press, Taylor & Francis Group, Boca Raton, 2017), Chap. 50, pp. 733–771. https://doi.org/10.4324/9781315152318-25

    Chapter  Google Scholar 

  68. H. Si, K. Gärtner, J. Fuhrmann, Comput. Math. Math. Phys. 50(1), 38 (2010). https://doi.org/10.1134/S0965542510010069

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. H.K. Gummel, IEEE Trans. Electron Dev. 11(10), 455 (1964). https://doi.org/10.1109/T-ED.1964.15364

    Article  ADS  Google Scholar 

  70. H. Gajewski, K. Gärtner, J. Appl. Math. Mech. 72(1), 19 (1992). https://doi.org/10.1002/zamm.19920720103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. F. Brezzi, L.D. Marini, P. Pietra, Comput. Methods Appl. Mech. Eng. 75(1–3), 493 (1989). https://doi.org/10.1016/0045-7825(89)90044-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. P.A. Markowich, in The Stationary Semiconductor Device Equations. Series in Computational Microelectronics (Springer, Vienna, 1986). https://doi.org/10.1007/978-3-7091-3678-2

    Book  Google Scholar 

  73. Silvaco International, Atlas User’s Manual (Santa Clara, CA, 2016)

    Google Scholar 

  74. Synopsys Inc, Sentaurus Device UserGuide (Mountain View, CA, 2010)

    Google Scholar 

  75. S.L.M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78(8), 085207 (2008). https://doi.org/10.1103/PhysRevB.78.085207

  76. M. Kantner, U. Bandelow, T. Koprucki, J.H. Schulze, A. Strittmatter, H.J. Wünsche, IEEE Trans. Electron Dev. 63(5), 2036 (2016). https://doi.org/10.1109/ted.2016.2538561

    Article  ADS  Google Scholar 

  77. J.D. Cressler, H.A. Mantooth (eds.), Extreme Environment Electronics (CRC Press, Taylor & Francis Group, Boca Raton, 2012). https://doi.org/10.1201/b13001

    Google Scholar 

  78. J.S. Blakemore, Solid-State Electron. 25(11), 1067 (1982). https://doi.org/10.1016/0038-1101(82)90143-5

    Article  ADS  Google Scholar 

  79. T. Koprucki, K. Gärtner, Opt. Quantum. Electron. 45(7), 791 (2013). https://doi.org/10.1007/s11082-013-9673-5

    Article  Google Scholar 

  80. M. Bessemoulin-Chatard, Numer. Math. 121(4), 637 (2012). https://doi.org/10.1007/s00211-012-0448-x

    Article  MathSciNet  MATH  Google Scholar 

  81. T. Koprucki, N. Rotundo, P. Farrell, D.H. Doan, J. Fuhrmann, Opt. Quantum. Electron. 47(6), 1327 (2015). https://doi.org/10.1007/s11082-014-0050-9

    Article  Google Scholar 

  82. P. Farrell, M. Patriarca, J. Fuhrmann, T. Koprucki, Opt. Quant. Electron. 50, 101 (2018). https://doi.org/10.1007/s11082-018-1349-8

  83. P. Farrell, T. Koprucki, J. Fuhrmann, J. Comput. Phys. 346, 497 (2017). https://doi.org/10.1016/j.jcp.2017.06.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. M. Patriarca, P. Farrell, J. Fuhrmann, T. Koprucki, Comput. Phys. Commun. 235, 40 (2019). https://doi.org/10.1016/j.cpc.2018.10.004

    Article  ADS  Google Scholar 

  85. J. Fuhrmann, Comput. Phys. Commun. 196, 166 (2015). https://doi.org/10.1016/j.cpc.2015.06.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Z. Yu, D. Chen, L. So, R.W. Dutton, PISCES-2ET 2D Device Simulator (Integrated Circuits Laboratory, Stanford University, Stanford, Tech. rep., 1994)

    Google Scholar 

  87. H. Gajewski, Mitt. Ges. Angew. Math. Mech. 16(1), 35 (1993)

    Google Scholar 

  88. H. Gajewski, K. Gärtner, J. Appl. Math. Mech. 76(5), 247 (1996). https://doi.org/10.1002/zamm.19960760502

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. D.M. Richey, J.D. Cressler, R.C. Jaeger, J. Phys. IV France 04(C6), C6 (1994). https://doi.org/10.1051/jp4:1994620

    Google Scholar 

  90. S. Selberherr, IEEE Trans. Electron Dev. 36(8), 1464 (1989). https://doi.org/10.1109/16.30960

    Article  ADS  Google Scholar 

  91. M. Bergot, M. Duruflé, J. Comput. Phys. 232(1), 189 (2013). https://doi.org/10.1016/j.jcp.2012.08.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, Phys. Status Solidi B 244, 3419 (2007). https://doi.org/10.1002/pssb.200743192

    Article  ADS  Google Scholar 

  93. S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, F. Schmidt, Proc. SPIE 9424, 94240Z (2015). https://doi.org/10.1117/12.2085795

  94. I. Babuška, M.R. Dorr, Numer. Math. 37(2), 257 (1981). https://doi.org/10.1007/BF01398256

    Article  MathSciNet  MATH  Google Scholar 

  95. N. Srocka, A. Musiał, P.I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, G. Sek, AIP Adv. 8, 085205 (2018). https://doi.org/10.1063/1.5038137

    Article  ADS  Google Scholar 

  96. M. Rozova, J. Pomplun, L. Zschiedrich, F. Schmidt, S. Burger, Proc. SPIE 8255, 82550K (2012). https://doi.org/10.1117/12.906372

  97. V. Shchukin, N. Ledentsov Jr., J. Kropp, G. Steinle, N. Ledentsov, S. Burger, F. Schmidt, IEEE J. Quantum Electron. 50, 990 (2014). https://doi.org/10.1109/jqe.2014.2364544

    Article  ADS  Google Scholar 

  98. V.A. Shchukin, N.N. Ledentsov, J.R. Kropp, G. Steinle, N.N. Ledentsov Jr., K.D. Choquette, S. Burger, F. Schmidt, Proc. SPIE 9381, 93810V (2015). https://doi.org/10.1117/12.2077012

  99. T. Höhne, L. Zschiedrich, N. Haghighi, J.A. Lott, S. Burger, Proc. SPIE 106821, 106821U (2018). https://doi.org/10.1117/12.2307200

  100. J. Pomplun, S. Burger, F. Schmidt, A. Schliwa, D. Bimberg, A. Pietrzak, H. Wenzel, G. Erbert, Phys. Status Solidi B 247, 846 (2010). https://doi.org/10.1002/pssb.200945451

    Article  ADS  Google Scholar 

  101. D. Peschka, M. Thomas, A. Glitzky, R. Nürnberg, K. Gärtner, M. Virgilio, S. Guha, T. Schroeder, G. Capellini, T. Koprucki, I.E.E.E. Photon, J. 7(3), 1 (2015). https://doi.org/10.1109/jphot.2015.2427093

    Article  Google Scholar 

  102. D. Peschka, M. Thomas, A. Glitzky, R. Nürnberg, M. Virgilio, S. Guha, T. Schroeder, G. Capellini, T. Koprucki, Opt. Quant. Electron. 48(2), 156 (2016). https://doi.org/10.1007/s11082-016-0394-4

  103. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, S. Reitzenstein, Nat. Commun. 6, 7662 (2015). https://doi.org/10.1038/ncomms8662

  104. P. Schnauber, A. Thoma, C.V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, S. Reitzenstein, Technologies 4(1), 1 (2016). https://doi.org/10.3390/technologies4010001

    Article  Google Scholar 

  105. P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.I. Park, G.H. Ryu, T. Heindel, S. Burger, J.D. Song, S. Rodt, S. Reitzenstein, Nano Lett. 18, 2336 (2018). https://doi.org/10.1021/acs.nanolett.7b05218

    Article  ADS  Google Scholar 

  106. T. Höhne, P. Schnauber, S. Rodt, S. Reitzenstein, S. Burger, Phys. Status Solidi B 256, 1800437 (2019). https://doi.org/10.1002/pssb.201800437

    Article  ADS  Google Scholar 

  107. K. Żołnacz, A. Musiał, N. Srocka, J. Große, M.J. Schlösinger, P.-I. Schneider, O. Kravets, M. Mikulicz, J. Olszewski, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, M. Dłubek, S. Rodt, S. Burger, L. Zschiedrich, G. Sȩk, S. Reitzenstein, W. Urbańczyk, Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications. Opt. Express 27(19), 26772–26785 (2019). https://doi.org/10.1364/OE.27.026772

    Article  ADS  Google Scholar 

  108. P. Mrowiński, P. Schnauber, P. Gutsche, A. Kaganskiy, J. Schall, S. Burger, S. Rodt, S. Reitzenstein, Directional emission of a deterministically fabricated quantum Dot–Bragg reflection multimode waveguide system. ACS Photonics 6(9), 2231–2237 (2019). https://doi.org/10.1021/acsphotonics.9b00369

    Article  Google Scholar 

  109. A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, J. Fuhrmann, K. Gärtner, A. Glitzky, Org. Electron. 13(11), 2461 (2012). https://doi.org/10.1016/j.orgel.2012.06.046

    Article  Google Scholar 

  110. M. Richter, F. Schlosser, M. Schoth, S. Burger, F. Schmidt, A. Knorr, S. Mukamel, Phys. Rev. B 86, 085308 (2012). https://doi.org/10.1103/physrevb.86.085308

  111. V.E. Babicheva, S.S. Vergeles, P.E. Vorobev, S. Burger, J. Opt. Soc. Am. B 29, 1263 (2012). https://doi.org/10.1364/josab.29.001263

    Article  Google Scholar 

  112. G. Kewes, A.W. Schell, R. Henze, R.S. Schonfeld, S. Burger, K. Busch, O. Benson, Appl. Phys. Lett. 102, 051104 (2013). https://doi.org/10.1063/1.4790824

    Article  ADS  Google Scholar 

  113. A. Abass, P. Gutsche, B. Maes, C. Rockstuhl, E.R. Martins, Opt. Express 24(17), 19638 (2016). https://doi.org/10.1364/oe.24.019638

    Article  ADS  Google Scholar 

  114. C. Becker, S. Burger, C. Barth, P. Manley, K. Jäger, D. Eisenhauer, G. Köppel, P. Chabera, J. Chen, K. Zheng, T. Pullerits, ACS Photonics 5, 4668 (2018). https://doi.org/10.1021/acsphotonics.8b01199

    Article  Google Scholar 

  115. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, M. Hetterich, Opt. Express 17, 1144 (2009). https://doi.org/10.1364/oe.17.001144

    Article  ADS  Google Scholar 

  116. B. Maes, J. Petráček, S. Burger, P. Kwiecien, J. Luksch, I. Richter, Opt. Express 21, 6794 (2013). https://doi.org/10.1364/oe.21.006794

    Article  ADS  Google Scholar 

  117. J.R. de Lasson, L.H. Frandsen, P. Gutsche, S. Burger, O.S. Kim, O. Breinbjerg, A. Ivanskaya, F. Wang, O. Sigmund, T. Häyrynen, A.V. Lavrinenko, J. Mork, N. Gregersen, Opt. Express 26, 11366 (2018). https://doi.org/10.1364/oe.26.011366

    Article  ADS  Google Scholar 

  118. G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, O. Benson, ACS Photonics 5, 4089 (2018). https://doi.org/10.1021/acsphotonics.8b00766

    Article  Google Scholar 

  119. L. Zschiedrich, F. Binkowski, N. Nikolay, O. Benson, G. Kewes, S. Burger, Phys. Rev. A 98, 043806 (2018). https://doi.org/10.1103/PhysRevA.98.043806

  120. F. Binkowski, L. Zschiedrich, M. Hammerschmidt, S. Burger, Modal analysis for nanoplasmonics with nonlocal material properties. Phys. Rev. B. 100(15), 155406 (2019). https://doi.org/10.1103/PhysRevB.100.155406

  121. P. Lalanne, W. Yan, A. Gras, C. Sauvan, J.-P. Hugonin, M. Besbes, G. Demésy, M.D. Truong, B. Gralak, F. Zolla, A. Nicolet, F. Binkowski, L. Zschiedrich, S. Burger, J. Zimmerling, R. Remis, P. Urbach, H.T. Liu, T. Weiss, Quasinormal mode solvers for resonators with dispersive materials. J. Opt. Soc. Am. A 36(4), 686–704 (2019). https://doi.org/10.1364/JOSAA.36.000686

    Article  ADS  Google Scholar 

  122. R. Holzlöhner, S. Burger, P.J. Roberts, J. Pomplun, J. Europ. Opt. Soc: Rap. Comm. 1, 06011 (2006). https://doi.org/10.2971/jeos.2006.06011

  123. J. Bethge, G. Steinmeyer, S. Burger, F. Lederer, R. Iliew, J. Light. Technol. 27, 1698 (2009). https://doi.org/10.1109/jlt.2009.2021583

    Article  ADS  Google Scholar 

  124. P. Gutsche, R. Mäusle, S. Burger, Photonics 3, 60 (2016). https://doi.org/10.3390/photonics3040060

    Article  Google Scholar 

  125. P. Gutsche, L.V. Poulikakos, M. Hammerschmidt, S. Burger, F. Schmidt, Proc. SPIE 9756, 97560X (2016). https://doi.org/10.1117/12.2209551

  126. D. Werdehausen, I. Staude, S. Burger, J. Petschulat, T. Scharf, T. Pertsch, M. Decker, Opt. Mater. Express 8, 3456 (2018). https://doi.org/10.1364/OME.8.003456

    Article  ADS  Google Scholar 

  127. D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica. 6(8),1031–1038 (2019). https://doi.org/10.1364/OPTICA.6.001031

    Article  ADS  Google Scholar 

  128. B. Wohlfeil, S. Burger, C. Stamatiadis, J. Pomplun, F. Schmidt, L. Zimmermann, K. Petermann, Proc. SPIE 8988, 89880K (2014). https://doi.org/10.1117/12.2044461

  129. B. Wohlfeil, G. Rademacher, C. Stamatiadis, K. Voigt, L. Zimmermann, K. Petermann, I.E.E.E. Photon, Technol. Lett. 28, 1241 (2016). https://doi.org/10.1109/lpt.2016.2514712

    Article  ADS  Google Scholar 

  130. H.J. Kimble, Nature 453(7198), 1023 (2008). https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  131. I. Aharonovich, D. Englund, M. Toth, Nat. Photonics 10(10), 631 (2016). https://doi.org/10.1038/nphoton.2016.186

    Article  ADS  Google Scholar 

  132. N. Somaschi, V. Giesz, L. de Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A.G. White, L. Lanco, P. Senellart, Nat. Photonics 10, 340 (2016). https://doi.org/10.1038/nphoton.2016.23

    Article  ADS  Google Scholar 

  133. W.L. Barnes, G. Björk, J.M. Gérard, P. Jonsson, J.A.E. Wasey, P.T. Worthing, V. Zwiller, Eur. Phys. J. D 18(2), 197 (2002). https://doi.org/10.1140/epjd/e20020024

    ADS  Google Scholar 

  134. P.I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, C. Rockstuhl, ACS Photonics 6(11), 2726–2733 (2019). https://doi.org/10.1021/acsphotonics.9b00706

    Article  Google Scholar 

  135. P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M.J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G.P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S.A. Riyopoulos, J.F.P. Seurin, S.L. Chuang, IEEE J. Quantum Elect. 37, 1618 (2001). https://doi.org/10.1109/3.970909

    Article  ADS  Google Scholar 

  136. K. Iga, IEEE, J. Sel. Top. Quantum Electron. 6, 1201 (2000). https://doi.org/10.1109/2944.902168

    Article  ADS  Google Scholar 

  137. M. Dems, I.S. Chung, P. Nyakas, S. Bischoff, K. Panajotov, Opt. Express 18, 16042 (2010). https://doi.org/10.1364/oe.18.016042

    Article  ADS  Google Scholar 

  138. D. Taillaert, P. Bienstman, R. Baets, Opt. Lett. 29, 2749 (2004). https://doi.org/10.1364/ol.29.002749

    Article  ADS  Google Scholar 

  139. B. Wohlfeil, C. Stamatiadis, M. Jäger, L. Zimmermann, S. Burger, K. Petermann, in 2014 The European Conference on Optical Communication (ECOC) (2014), pp. 1–3. https://doi.org/10.1109/ecoc.2014.6963980

  140. W. Unrau, D. Quandt, J.H. Schulze, T. Heindel, T.D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U.W. Pohl, D. Bimberg, Appl. Phys. Lett. 101(21), 211119 (2012). https://doi.org/10.1063/1.4767525

    Article  ADS  Google Scholar 

  141. A. Strittmatter, A. Holzbecher, A. Schliwa, J.H. Schulze, D. Quandt, T.D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I.A. Ostapenko, S. Rodt, W. Unrau, U.W. Pohl, A. Hoffmann, D. Bimberg, V.A. Haisler, Phys. Status Solidi A 209(12), 2411 (2012). https://doi.org/10.1002/pssa.201228407

    Article  ADS  Google Scholar 

  142. A. Strittmatter, A. Schliwa, J.H. Schulze, T.D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I.A. Ostapenko, S. Rodt, W. Unrau, U.W. Pohl, A. Hoffmann, D. Bimberg, V.A. Haisler, Appl. Phys. Lett. 100(9), 093111 (2012). https://doi.org/10.1063/1.3691251

    Article  ADS  Google Scholar 

  143. F. Kießling, T. Niermann, M. Lehmann, J.H. Schulze, A. Strittmatter, A. Schliwa, U.W. Pohl, Phys. Rev. B 91(7), 075306 (2015). https://doi.org/10.1103/physrevb.91.075306

  144. M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.H. Schulze, S. Rodt, A. Strittmatter, S. Reitzenstein, Appl. Phys. Lett. 110(11), 111101 (2017). https://doi.org/10.1063/1.4978428

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the German Research Foundation (DFG) within the collaborative research center SFB 787 Semiconductor Nanophotonics under grant B4. The authors would like to thank Patricio Farrell, Jürgen Fuhrmann, Philipp Gutsche, Jan Pomplun, Nella Rotundo, Alexander Wilms, Benjamin Wohlfeil and Lin Zschiedrich for excellent collaboration and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kantner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kantner, M. et al. (2020). Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_7

Download citation

Publish with us

Policies and ethics