Skip to main content

Nitride Microcavities and Single Quantum Dots for Classical and Non-classical Light Emitters

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Abstract

Microcavities with InGaN quantum wells or GaN-based quantum dots as active medium are building blocks of electrically-driven, low-threshold surface-emitting lasers or single photon emitters in the visible-to-UV spectral range. In this chapter, we highlight essential developments in epitaxial growth techniques of such nitride-based microcavities and their active regions. Modern analytical techniques for structural and optical characterization of these complex heterostructures as presented in this chapter are essential to solve remaining challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The slip directions are denoted by the \( {<}11\bar{2}3{>} \) directions. This slip occurs on the \( \{ 11\bar{2}2\} \) planes.

  2. 2.

    For other thicknesses, In concentration or MC designs this number may vary.

References

  1. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  2. H. Soda, K. Iga, C. Kitahara, Y. Suematsu, Jpn. J. Appl. Phys. 18, 2329 (1979)

    Article  ADS  Google Scholar 

  3. P.A.M. Dirac, Proceedings of the royal society of London A: mathematical. Physical and Engineering Sciences 114, 243 (1927)

    Google Scholar 

  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)

    Google Scholar 

  5. R. Butté, N. Grandjean, Semicond. Sci. Technol. 26, 014030 (2011)

    Article  ADS  Google Scholar 

  6. C. Bennett, P. Shor, IEEE Trans. Inf. Theory 44(6), 2724–2742 (1998)

    Article  Google Scholar 

  7. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge and New York, 2000)

    MATH  Google Scholar 

  8. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  9. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley, Chichester (England) and New York, 1999)

    Google Scholar 

  10. A.J. Shields, Nat. Photonics 1(4), 215–223 (2007)

    Article  ADS  Google Scholar 

  11. M. Grundmann, J. Christen, N.N. Ledentsov, J. Böhrer, D. Bimberg, S.S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, Phys. Rev. Lett. 74 (20), 4043–4046 (1995)

    Google Scholar 

  12. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59(8), 5688–5701 (1999)

    Article  ADS  Google Scholar 

  13. P. Michler, A. Imamoglu, M.D. Mason, P.J. Carson, G. Strouse, S.K. Buratto, Nature 406 (6799), 968–970 (2000)

    Google Scholar 

  14. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290(5500), 2282–2285 (2000)

    Article  ADS  Google Scholar 

  15. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Phys. Rev. Lett. 86(8), 1502–1505 (2001)

    Article  ADS  Google Scholar 

  16. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science (New York, N.Y.) 295 (5552), 102–105 (2002)

    Google Scholar 

  17. S. Kako, C. Santori, K. Hoshino, S. Goetzinger, Y. Yamamoto, Y. Arakawa, Nat. Mater. 5, 887 (2006)

    Article  ADS  Google Scholar 

  18. M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Nano Lett. 14(2), 982–986 (2014)

    Article  ADS  Google Scholar 

  19. M. Tchernycheva, L. Nevou, L. Doyennette, F.H. Julien, E. Warde, F. Guillot, E. Monroy, E. Bellet-Amalric, T. Remmele, M. Albrecht, Phys. Rev. B 73 (12) (2006)

    Google Scholar 

  20. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89(11), 5815 (2001)

    Article  ADS  Google Scholar 

  21. H.P.D. Schenk, E. Feltin, P. Vennéguès, O. Tottereau, M. Laügt, M. Vaille, B. Beaumont, P. de Mierry, P. Gibart, S. Fernández, F. Calle, Phys. Status Solidi (a) 188, 899 (2001)

    Google Scholar 

  22. T. Shirasawa, N. Mochida, A. Inoue, T. Honda, T. Sakaguchi, F. Koyama, K. Iga, J. Cryst. Growth 189–190, 124 (1998)

    Article  ADS  Google Scholar 

  23. J.F. Carlin, M. Ilegems, Appl. Phys. Lett. 83, 668 (2003)

    Article  ADS  Google Scholar 

  24. J.F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, N. Grandjean, Phys. Status Solidi (b) 242, 2326 (2005)

    Google Scholar 

  25. C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, A. Strittmatter, J. Cryst. Growth 414, 105 (2015)

    Article  ADS  Google Scholar 

  26. C. Berger, Dissertation, Otto-von-Guericke-Universität Magdeburg (2017)

    Google Scholar 

  27. A. Dadgar, A. Krost, Epitaxial growth and benefits of GaN on silicon, in III-Nitride Semiconductors and their Modern Devices, ed. by B. Gil (Oxford University Press). ISBN 978-0-19-968172-3 (2013)

    Google Scholar 

  28. C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit , G. Schmidt, T. Hempel, J. Christen, A. Krost, A. Strittmatter, J. Cryst. Growth 414, 105 (2015)

    Google Scholar 

  29. J. Dorsaz, J.F. Carlin, S. Gradecak, M. Ilegems, J. Appl. Phys. 97, 084505 (2005)

    Article  ADS  Google Scholar 

  30. H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, I. Akasaki, Phys. Stat. Sol. (b) 216, 683 (1999)

    Google Scholar 

  31. J. Bläsing, A. Reiher, A. Dadgar, A. Diez, A. Krost, Appl. Phys. Lett. 81, 2722 (2002)

    Article  ADS  Google Scholar 

  32. E. Feltin, J.F. Carlin, J. Dorsaz, G. Christmann, R. Butté, M. Laügt, M. Ilegems, N. Grandjean, Appl. Phys. Lett. 88, 051108 (2006)

    Article  ADS  Google Scholar 

  33. T.C. Lu, J.R. Chen, S.W. Chen, H.C. Kuo, C.C. Kuo, C.C. Lee, S.C. Wang, IEEE J. Sel. Top. Quantum Electron. 15, 850 (2009)

    Article  ADS  Google Scholar 

  34. J.F. Carlin, J. Dorsaz, E. Feltin, R. Butté, N. Grandjean, M. Ilegems, M. Laügt, Appl. Phys. Lett. 86, 031107 (2005)

    Article  ADS  Google Scholar 

  35. G. Christmann, D. Simeonov, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Appl. Phys. Lett. 89, 261101 (2006)

    Article  ADS  Google Scholar 

  36. Z. Gacevic, G. Rossbach, R. Butté, F. Réveret, M. Glauser, J. Levrat, G. Cosendey, J.F. Carlin, N. Grandjean, E. Calleja, J. Appl. Phys. 114, 233102 (2013)

    Article  ADS  Google Scholar 

  37. G. Cosendey, (In,Al)N-based blue microcavity lasers. Dissertation, École Polytechnique Fédérale de Lausanne (2013)

    Google Scholar 

  38. S. Kako, T. Someya, Y. Arakawa, Appl. Phys. Lett. 80, 722 (2002)

    Article  ADS  Google Scholar 

  39. F. Bertram, J. Christen, G. Schmidt, P. Veit, C. Berger, A. Krost, Microsc. Microanal. 18, 1874 (2012)

    Article  ADS  Google Scholar 

  40. M. Akazawa, B. Gao, T. Hashizume, M. Hiroki, S. Yamahata, N. Shigekawa, Appl. Phys. Lett. 98(14), 142117 (2011)

    Article  ADS  Google Scholar 

  41. A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250–4253 (1996)

    Article  ADS  Google Scholar 

  42. V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Solid State Commun. 93, 733 (1995)

    Article  ADS  Google Scholar 

  43. L.A. Coldren, S.W. Corzine, M. Mashanovitch, Diode lasers and photonic integrated circuits. Wiley Series in Microwave and Optical Engineering, vol. 218, 2nd edn. (Wiley, Hoboken and NJ) (2012)

    Google Scholar 

  44. G. Schmidt, M. Müller, P. Veit, F. Bertram, J. Christen, M. Glauser, J.-F. Carlin, G. Cosendey, R. Butté, N. Grandjean, Appl. Phys. Lett. 105(3), 032101 (2014)

    Article  ADS  Google Scholar 

  45. J. Matthews, A. Blakeslee, J. Cryst. Growth 29(3), 273–280 (1975)

    Article  ADS  Google Scholar 

  46. A. Fischer, H. Kühne, H. Richter, Phys. Rev. Lett. 73, 2712 (1994)

    Article  ADS  Google Scholar 

  47. D. Holec, Y. Zhang, D.V.S. Rao, M.J. Kappers, C. McAleese, C.J. Humphreys, J. Appl. Phys. 104 (12), 123514 (2008)

    Google Scholar 

  48. R. People, J.C. Bean, Appl. Phys. Lett. 47(3), 322 (1985)

    Article  ADS  Google Scholar 

  49. M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, M. Kneissl, J. Cryst. Growth 310(23), 4913–4915 (2008)

    Article  ADS  Google Scholar 

  50. C.A. Parker, J.C. Roberts, S.M. Bedair, M.J. Reed, S.X. Liu, N.A. El-Masry, Appl. Phys. Lett. 75(18), 2776 (1999)

    Article  ADS  Google Scholar 

  51. C. Hums, MOVPE Wachstum und Eigenschaften von AlIn(Ga)N Schichten und Schichtsystemen. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg (2012)

    Google Scholar 

  52. B.W. Dodson, J.Y. Tsao, Appl. Phys. Lett. 51(17), 1325 (1987)

    Article  ADS  Google Scholar 

  53. A.D. Bykhovski, B.L. Gelmont, M.S. Shur, J. Appl. Phys. 81(9), 6332 (1997)

    Article  ADS  Google Scholar 

  54. M. Glauser, G. Rossbach, G. Cosendey, J. Levrat, M. Cobet, J.-F. Carlin, J. Besbas, M. Gallart, P. Gilliot, R. Butté, N. Grandjean, Phys. Status Solidi (c) 9(5), 1325–1329 (2012)

    Article  ADS  Google Scholar 

  55. G. Schmidt, Optische Nanocharakterisierung GaN-basierter Quantenstrukturen für Mikrokavitäten. Doctoral Thesis, Otto-von-Guericke-University Magdeburg, Magdeburg 2017

    Google Scholar 

  56. L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, A. Zunger, Appl. Phys. Lett. 74(13), 1842 (1999)

    Article  ADS  Google Scholar 

  57. D. Watson-Parris, M.J. Godfrey, P. Dawson, R.A. Oliver, M.J. Galtrey, M.J. Kappers, C.J. Humphreys, Phys. Rev. B 83 (11) (2011)

    Google Scholar 

  58. S. Schulz, M.A. Caro, C. Coughlan, E.P. O’Reilly, Phys. Rev. B 91 (3) (2015)

    Google Scholar 

  59. P.R.C. Kent, A. Zunger, Appl. Phys. Lett. 79(13), 1977 (2001)

    Article  ADS  Google Scholar 

  60. L.-W. Wang, Phys. Rev. B 63 (24) (2001)

    Google Scholar 

  61. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5(10), 810–816 (2006)

    Article  ADS  Google Scholar 

  62. S. Chichibu, T. Sota, K. Wada, S. Nakamura, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 16(4), 2204 (1998)

    Article  ADS  Google Scholar 

  63. D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97(10), 103508 (2005)

    Article  ADS  Google Scholar 

  64. M.J. Galtrey, R.A. Oliver, M.J. Kappers, C.J. Humphreys, P.H. Clifton, D. Larson, D.W. Saxey, A. Cerezo, J. Appl. Phys. 104(1), 013524 (2008)

    Article  ADS  Google Scholar 

  65. Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics. Springer Tracts in Modern Physics, vol. 169 (Springer, Berlin and New York) (2000)

    Google Scholar 

  66. A. Kavokin, G. Malpuech, Cavity polaritons. Thin Films and Nanostructures, vol. 32, 1st edn. (Elsevier, Acad. Press, Amsterdam [u.a.]) (2003)

    Google Scholar 

  67. S.M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box. Wiley Series in Lasers and Applications. Wiley, New York (2005)

    Google Scholar 

  68. B. Deveaud, The Physics of Semiconductor Microcavities: From Fundamentals to Nanoscale Devices (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  69. A. Kavokin, Microcavities. Series on Semiconductor Science and Technology, vol. 16 (Oxford University Press, Oxford) (2007)

    Google Scholar 

  70. A. Franke, Licht - Materie -Wechselwirkung in nitridischen Mikrokavitäten. Doctoral thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg (2012)

    Google Scholar 

  71. M. Glauser, C. Mounir, G. Rossbach, E. Feltin, J.-F. Carlin, R. Butté, N. Grandjean, J. Appl. Phys. 115(23), 233511 (2014)

    Article  ADS  Google Scholar 

  72. G. Schmidt, P. Veit, C. Berger, F. Bertram, A. Dadgar, A. Strittmatter, J. Christen, Jpn. J. Appl. Phys. 55, 05FF04 (2016)

    Google Scholar 

  73. I.N. Stranski, L. Krastanow, Sitzungsber. Akad. Wiss. Wien, Math. Naturwiss. Kl., Abt. 2B 146, 797 (1937)

    Google Scholar 

  74. W. Ostwald, Z. Phys, Chem. (Leipzig) 34, 495 (1990)

    Google Scholar 

  75. K. Poetschke, L. Mueller-Kirsch, R. Heitz, R.L. Sellin, U.W. Pohl, D. Bimberg, N. Zakharov, P. Werner, Phys. E (Amsterdam) 21, 606 (2004)

    Article  Google Scholar 

  76. A.E. Zhukov, A.R. Kovsh, S.S. Mikhrin, N.A. Maleev, V.M. Ustinov, D.A. Livshits, I.S. Tarasov, D.A. Bedarev, M.V. Maximov, A.F. Tsatsul’nikov, I.P. Soshnikov, P.S. Kop’ev, Z.I. Alferov, N.N. Ledentsov, D. Bimberg, Electron. Lett. 35, 1845 (1999)

    Google Scholar 

  77. T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, D. Bimberg, Appl. Phys. Lett. 85, 1946 (2004)

    Google Scholar 

  78. I.N. Kaiander, R.L. Sellin, T. Kettler, N.N. Ledentsov, D. Bimberg, N.D. Zakharov, P. Werner, Appl. Phys. Lett. 84, 2992 (2004)

    Google Scholar 

  79. G. Schmidt, C. Berger, P. Veit, S. Metzner, F. Bertram, J. Bläsing, A. Dadgar, A. Strittmatter, J. Christen, G. Callsen, S. Kalinowski, A. Hoffmann, Appl. Phys. Lett. 106, 252101 (2015)

    Article  ADS  Google Scholar 

  80. G. Hönig, G. Callsen, A. Schliwa, S. Kalinowski, C. Kindel, S. Kako, Y. Arakawa, D. Bimberg, A. Hoffmann, Nat. Commun. 5, 5721 (2014)

    Article  ADS  Google Scholar 

  81. G. Callsen, Advanced optical signatures of single, wurtzite GaN quantum dots: From fundamental exciton coupling mechanisms towards tunable photon statistics and hybrid-quasiparticles. Ph.D. thesis, TU Berlin, Berlin (2015)

    Google Scholar 

  82. G. Callsen, G.M.O. Pahn, S. Kalinowski, C. Kindel, J. Settke, J. Brunnmeier, C. Nenstiel, T. Kure, F. Nippert, A. Schliwa, A. Hoffmann, T. Markurt, T. Schulz, M. Albrecht, S. Kako, M. Arita, Y. Arakawa, Phys. Rev. B 92, 235439 (2015)

    Google Scholar 

  83. I.A. Ostapenko, Influence of defects, phonons and strain on the luminescence properties of nitride- and arsenide-based quantum dots. Ph.D. thesis, TU Berlin, Berlin (2012)

    Google Scholar 

  84. I.A. Ostapenko, G. Hönig, S. Rodt, A. Schliwa, A. Hoffmann, D. Bimberg, M.R. Dachner, M. Richter, A. Knorr, S. Kako, Y. Arakawa, Phys. Rev. B 85, 081303(R) (2012)

    Article  ADS  Google Scholar 

  85. G. Callsen, G.M.O. Pahn, Phys. Status Solidi RRL 9(9), 521–525 (2015)

    Article  Google Scholar 

  86. S. Kako, K. Hoshino, S. Iwamoto, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 85(1), 64–66 (2004)

    Article  ADS  Google Scholar 

  87. J. Renard, R. Songmuang, C. Bougerol, B. Daudin, B. Gayral, Nano Lett. 8(7), 2092–2096 (2008)

    Article  ADS  Google Scholar 

  88. S. Amloy, K.H. Yu, K.F. Karlsson, R. Farivar, T.G. Andersson, P.O. Holtz, Appl. Phys. Lett. 99, 251903 (2011)

    Article  ADS  Google Scholar 

  89. K. Choi, S. Kako, M.J. Holmes, M. Arita, Y. Arakawa, Appl. Phys. Lett. 103(17), 171907 (2013)

    Article  ADS  Google Scholar 

  90. G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M.R. Wagner, E. Stock, J.S. Reparaz, A. Schliwa, S. Reitzenstein, A. Knorr, A. Hoffmann, S. Kako, Y. Arakawa, Phys. Rev. B 87, 245314 (2013)

    Article  ADS  Google Scholar 

  91. G. Jurczak, T.D. Young, P. Dluzewski, Phys. Status Solidi C 10, 97 (2013)

    Article  ADS  Google Scholar 

  92. M. Winkelnkemper, A. Schliwa, D. Bimberg, Phys. Rev. B 74, 155322 (2006)

    Article  ADS  Google Scholar 

  93. T. Bretagnon, P. Lefebvre, P. Valvin, R. Bardoux, T. Guillet, T. Taliercio, B. Gil, N. Grandjean, F. Semond, B. Damilano, A. Dussaigne, J. Massies, Phys. Rev. B 73, 113304 (2006)

    Article  ADS  Google Scholar 

  94. R. Bardoux, T. Guillet, P. Lefebvre, T. Taliercio, T. Bretagnon, S. Rousset, B. Gil, F. Semond, Phys. Rev. B 74, 195319 (2006)

    Article  ADS  Google Scholar 

  95. G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, J.-P. Poizat, Nat. Photonics 4, 696 (2010)

    Article  ADS  Google Scholar 

  96. K. Hoshino, S. Kako, Y. Arakawa, Appl. Phys. Lett. 85, 1262 (2004)

    Google Scholar 

  97. G. Hönig, S. Rodt, G. Callsen, I.A. Ostapenko, T. Kure, A. Schliwa, C. Kindel, D. Bimberg, A. Hoffmann, S. Kako, Y. Arakawa, Phys. Rev. B 88, 045309 (2013)

    Article  ADS  Google Scholar 

  98. D. Simeonov, A. Dussaigne, R. Butte, N. Grandjean, Phys. Rev. B 77, 075306 (2008)

    Article  ADS  Google Scholar 

  99. S. Tomić, N. Vukmirović, Phys. Rev. B 79, 245330 (2009)

    Google Scholar 

  100. S. Tomić, N. Vukmirović, [Phys. Rev. B 79, 245330 (2009)], Phys. Rev. B 86, 159902(E) (2012)

    Google Scholar 

  101. A. Franke, M.P. Hoffmann, L. Hernandez-Balderrama, F. Kaess, I. Bryan, S. Washiyama, M. Bobea, J. Tweedie, R. Kirste, M. Gerhold, R. Collazo, Z. Sitar, Proc. SPIE 9748, 97481G (2016)

    Article  ADS  Google Scholar 

  102. T. Detchprohm, Y.S. Liu, K. Mehta, S. Wang, H. Xie, T.T. Kao, S.C. Shen, P.D. Yoder, F.A. Ponce, R.D. Dupuis, Appl. Phys. Lett. 110(1), 011105 (2017)

    Article  ADS  Google Scholar 

  103. D.M. Follstaedt, S.R. Lee, A.A. Allerman, J.A. Floro, J. Appl. Phys. 105, 083507 (2009)

    Article  ADS  Google Scholar 

  104. B. Liu, R. Zhang, J.G. Zheng, X.L. Ji, D.Y. Fu, Z.L. Xie, D.J. Chen, P. Chen, R.L. Jiang, Y.D. Zheng, Appl. Phys. Lett. 98, 10 (2011)

    Google Scholar 

  105. X.L. Ji, R.L. Jiang, B. Liu, Z.L. Xie, J.J. Zhou, L. Li, P. Han, R. Zhang, Y.D. Zheng, J.G. Zheng, Phys. Status Solidi A 205, 1572 (2008)

    Article  ADS  Google Scholar 

  106. L.L. Zhang, Z.-H. Liu, X.-G. Huang, Q.-F. Li, J. Korean Phys. Soc. 65, 1101 (2014)

    Article  ADS  Google Scholar 

  107. E. Feltin, G. Christmann, J. Dorsaz, A. Castiglia, J.F. Carlin, R. Butté, N. Grandjean, S. Christopoulos, G. Baldassarri, H.V. Hogersthal, A.J.D. Grundy, P.G. Lagoudakis, J.J. Baumberg, Electron. Lett. 43, 924 (2007)

    Article  Google Scholar 

  108. Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, Appl. Phys. Express 1, 1211021 (2008)

    Google Scholar 

  109. C. Nenstiel, M. Bügler, G. Callsen, F. Nippert, T. Kure, S. Fritze, A. Dadgar, H. Witte, J. Bläsing, A. Krost, Hoffmann, Phys. Status Solidi RRL 9 (12) 716–721 (2015)

    Google Scholar 

  110. S. Fritze, A. Dadgar, H. Witte, M. Bügler, A. Rohrbeck, J. Bläsing, A. Hoffmann, A. Krost, Appl. Phys. Lett. 100, 122104 (2012)

    Google Scholar 

  111. C. Skierbiszewski, G. Muziol, K. Nowakowski-Szkudlarek, H. Turski, M. Siekacz, A. Feduniewicz-Zmuda, A. Nowakowska-Szkudlarek, M. Sawicka, P. Perlin, Appl. Phys. Express 11(3), 034103 (2018)

    Google Scholar 

  112. S. Lee, C.A. Forman, C. Lee, J. Kearns, E.C. Young, J.T. Leonard, D.A. Cohen, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl. Phys. Express 11(6), 062703 (2018)

    Google Scholar 

  113. S. Neugebauer, M.P. Hoffmann, H. Witte, J. Bläsing, A. Dadgar, A. Strittmatter, T. Niermann, M. Narodovitch, M. Lehmann, Appl. Phys. Lett. 110, 102104 (2017)

    Google Scholar 

  114. Armin Dadgar, Transparente leitfähige Nitride. Vak. Forsch. Prax. 30(4), 26 (2018)

    Article  Google Scholar 

  115. Yuhao Zhang, Daniel Piedra, Min Sun, Jonas Hennig, Armin Dadgar, Yu. Lili, Tomas Palacios, IEEE Electron Device Lett. 38, 248 (2017)

    Google Scholar 

  116. I.M. Watson, C. Xiong, E. Gu, M.D. Dawson, F. Rizzi, K. Bejtka, P.R. Edwards, R.W. Martin, Proceedings of SPIE, volume 6993, MEMS, MOEMS, and Micromachining III (2008), p. 69930E

    Google Scholar 

  117. D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, N. Grandjean, Appl. Phys. Lett. 92, 171102 (2008)

    Google Scholar 

  118. J. Dorsaz, H.-J. Bühlmann, J.-F. Carlin, N. Grandjean, M. Ilegems, Appl. Phys. Lett. 87, 072102 (2005)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the German Research Foundation (DFG) for financial support within the Research Instrumentation Program INST 272/148-1 and the Collaborative Research Center SFB 787 “Semiconductor Nanophotonics: Materials, Models, Devices”.

Many thanks to Silke Petzold (University of Magdeburg) for her work regarding the specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dadgar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, G. et al. (2020). Nitride Microcavities and Single Quantum Dots for Classical and Non-classical Light Emitters. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_12

Download citation

Publish with us

Policies and ethics