Skip to main content

VCSEL-Based Silicon Photonic Interconnect Technologies

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 194))

  • 1953 Accesses

Abstract

This chapter motivates the development of silicon photonic interconnect technologies based on vertical-cavity surface-emitting lasers (VCSELs) for future datacom applications, demanding cost effective, spectrally efficient and high-speed transmission links. We shall first present a classification of current interconnect technologies, used transmission techniques and requirements for the next generation of communication links. Furthermore, we shall discuss recent research activities on the integration of VCSELs in silicon photonics and the potential advantages of VCSEL-based silicon photonic transceiver solutions. In the subsequent sections, we introduce commercially available device structures emitting at tele- and datacom wavelengths. Based on experimentally determined characteristics, we model the system behavior and performance for high-speed coherent transmission links using quadrature phase-shift keying (QPSK). In addition, a brief introduction in digital signal processing is given. Following, incoherent, as well as coherent VCSEL-based transmission links are presented and analyzed. System performance and behavior are investigated with long-wavelength VCSELs as transmitter. Dependencies on the data rate and the bias point are further discussed. Finally, we conclude this chapter and give an outlook on the future VCSEL-based interconnects using spectrally efficient transmission techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2016–2021. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html. Accessed 5 Nov 2018

  2. Cisco, Cisco Global Cloud Index: Forecast and Methodology, 2016–2021. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html. Accessed 5 Nov 2018

  3. R. Urata, H. Liu, X. Zhou, A. Vahdat, Datacenter interconnect and networking: from evolution to holistic revolution, in Paper Presented at the 40th Optical Fiber Communications Conference and Exhibition, Los Angeles Convention Center, Los Angeles, 19–23 Mar 2017

    Google Scholar 

  4. C. Doerr et al., Single-chip silicon photonics 100-Gb/s coherent transceiver, in Paper Presented at the 37th Optical Fiber Communications Conference and Exhibition, Moscone Center, San Francisco, 9–13 Mar 2014

    Google Scholar 

  5. J.C. Rasmussen, T. Drenski, DSP for short reach optical links, in Paper Presented at the 43rd European Conference on Optical Communication, Svenska Massan, Gothenburg, 17–21 Sept 2017

    Google Scholar 

  6. J.A. Tatum et al., VCSEL-based interconnects for current and future data centers. J. Lightw. Technol. 33(4), 727–732 (2015). https://doi.org/10.1109/JLT.2014.2370633

    Article  ADS  Google Scholar 

  7. Y. Li, Y. Zhang, L. Zhang, A. Poon, Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]. Photon. Res. 3(5), B10–B27 (2015). https://doi.org/10.1364/PRJ.3.000B10

    Article  Google Scholar 

  8. H. Zhang et al., Real-time transmission of 16 Tb/s over 1020 km using 200 Gb/s CFP2-DCO. Opt. Expr. 26(6), 6943–6948 (2018). https://doi.org/10.1364/OE.26.006943

    Article  ADS  Google Scholar 

  9. M.A. Taubenblatt, Optical interconnects for high-performance computing. J. Lightw. Technol. 30(4), 448–457 (2012). https://doi.org/10.1109/JLT.2011.2172989

    Article  ADS  Google Scholar 

  10. G. Winzer et al., Monolithic photonic-electronic QPSK receiver for 28 Gbaud, in Paper Presented at the 38th Optical Fiber Communications Conference and Exhibition, Los Angeles Convention Center, Los Angeles, 22–26 Mar 2015

    Google Scholar 

  11. B. Wohlfeil et al., First demonstration of fully integrated segmented driver and MZM in 0.25-µm SiGe BiCMOS employing 112 Gb/s PAM4 over 60 km SSMF, in Paper Presented at the 44th European Conference on Optical Communication, Fiera Roma, Rome, 23–27 Sept 2018

    Google Scholar 

  12. J.P. Reithmaier, M. Benyoucef, III–V integration on Si for photonics, in Paper Presented at the IEEE Photonics Society Summer Topical Meeting Series, Newport Beach Marriott Hotel, Newport Beach, 11–13 July 2016

    Google Scholar 

  13. A.Y. Liu et al., High performance continuous wave 1.3 μm quantum dot lasers on silicon. App. Phys. Lett. 104(4), 041104–041104 (2014). https://doi.org/10.1063/1.4863223

    Article  ADS  Google Scholar 

  14. G.-H. Duan et al., Hybrid III–V silicon photonic integrated circuits for optical communication applications. IEEE J. Sel. Topics Quantum Electron. 22(6), 379–389 (2016). https://doi.org/10.1109/JSTQE.2016.2614661

    Article  ADS  Google Scholar 

  15. G.-H. Duan et al., Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Topics Quantum Electron. 20(4), 158–170 (2014). https://doi.org/10.1109/JSTQE.2013.2296752

    Article  ADS  Google Scholar 

  16. M.J.R. Heck et al., Hybrid silicon photonics for optical interconnects. IEEE J. Sel. Topics Quantum Electron. 17(2), 333–346 (2011). https://doi.org/10.1109/JSTQE.2010.2051798

    Article  ADS  Google Scholar 

  17. H. Huang et al., Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B 35(11), 2780–2787 (2018). https://doi.org/10.1364/JOSAB.35.002780

    Article  ADS  Google Scholar 

  18. T. Mitze et al., CWDM transmitter module based on hybrid integration. IEEE J. Sel. Topics Quantum Electron. 12(5), 983–987 (2006). https://doi.org/10.1109/JSTQE.2006.882643

    Article  ADS  Google Scholar 

  19. C. Xie et al., All-VCSEL based 100-Gb/s PDM-4PAM coherent system for applications in metro networks, in Paper Presented at the 40th European Conference on Optical Communication, Palais des Festivals, Cannes, 21–25 Sept 2014

    Google Scholar 

  20. T.N. Huynh et al., Digital coherent communications with a 1550 nm VCSEL, in Paper Presented at the 38th Optical Fiber Communications Conference and Exhibition, Los Angeles Convention Center, Los Angeles, 22–26 Mar 2015

    Google Scholar 

  21. A.Y. Liu, J. Bowers, Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Topics Quantum Electron. 24(6), 1–12 (2018). https://doi.org/10.1109/JSTQE.2018.2854542

    Article  Google Scholar 

  22. R. Michalzik (ed.), VCSELs (Springer, Berlin Heidelberg, 2013)

    Google Scholar 

  23. M.-C. Amann, W. Hofmann, InP-based long-wavelength VCSELs and VCSEL arrays. IEEE J. Sel. Topics Quantum Electron. 15(3), 861–868 (2009). https://doi.org/10.1109/JSTQE.2009.2013182

    Article  ADS  Google Scholar 

  24. W. Hofmann, High-speed buried tunnel junction vertical-cavity surface-emitting lasers. IEEE Photon. J. 2(5), 802–815 (2010). https://doi.org/10.1109/JPHOT.2010.2055554

    Article  ADS  Google Scholar 

  25. J.A. Lott et al., 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs–GaAs submonolayer quantum dot insertions, in Paper Presented at the SPIE Opto: Integrated Optoelectronic Devices Conference, San Jose Convention Center, San Jose, 24–29 Jan 2009

    Google Scholar 

  26. S.-Y. Kim et al., VCSEL-based coherent detection of 10-Gbit/s QPSK signals using digital phase noise cancellation for future optical access systems, in Paper Presented at the 33rd Conference On Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference, San Diego Convention Center, San Diego, 21–25 Mar 2010

    Google Scholar 

  27. C. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982). https://doi.org/10.1109/JQE.1982.1071522

    Article  ADS  Google Scholar 

  28. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, Dordrecht, 1988)

    Book  Google Scholar 

  29. G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)

    Book  Google Scholar 

  30. F.M. De Sopra et al., Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth. IEEE Photon. Technol. Lett. 11(12), 1533–1535 (1999). https://doi.org/10.1109/68.806836

    Article  ADS  Google Scholar 

  31. S. Viciani et al., Lineshape of a vertical cavity surface emitting laser. Opt. Commun. 206(1–3), 89–97 (2002). https://doi.org/10.1016/S0030-4018(02)01381-0

    Article  ADS  Google Scholar 

  32. S. Spießberger, Dissertation, Technische Universität Berlin (2012)

    Google Scholar 

  33. K.L. Letchworth, D.C. Benner, Rapid and accurate calculation of the Voigt function. J. Quant. Spectrosc. Radiat. Transf. 107(1), 173–192 (2007). https://doi.org/10.1016/j.jqrst.2007.01.052

    Article  ADS  Google Scholar 

  34. W. Schmid et al., Delayed self-heterodyne linewidth measurement of VCSELs. IEEE Photon. Technol. Lett. 8(10), 1288–1290 (1996). https://doi.org/10.1109/68.536630

    Article  ADS  Google Scholar 

  35. K. Kikuchi, High spectral density optical communication technologies, in Optical and Fiber Communications Reports, vol. 6, ed. by M. Nakazawa, K. Kikuchi, T. Miyazaki (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  36. T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (Kluwer Academic Publishers, Dordrecht, 1988)

    Google Scholar 

  37. T.N. Huynh et al., BER performance of coherent optical communications systems employing monolithic tunable lasers with excess phase noise. J. Lightw. Technol. 32(10), 1973–1980 (2014). https://doi.org/10.1109/JLT.2014.2319108

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank VERTILAS GmbH, Munich, Germany, for providing the VCSELs. We’d also like to thank Prof. Dr.-Ing. Dr. H. C. Petermann for his ongoing support and counsel. Furthermore, we want to thank our colleagues at IHP, Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany and at Technische Universität Berlin, Germany—namely Anna Peczek, Marcel Kroh, Georg Winzer and Gregor Ronniger—for their support. Also, we want to thank the group from Prof. James Lott (SFB 787, project C01) for the cooperation and the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal M. Seiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seiler, P.M., Tillack, B., Zimmermann, L. (2020). VCSEL-Based Silicon Photonic Interconnect Technologies. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_11

Download citation

Publish with us

Policies and ethics