Skip to main content

Deep Learning Meets Malware Detection: An Investigation

  • Chapter
  • First Online:
Combating Security Challenges in the Age of Big Data

Abstract

From the dawn of computer programs, malware programs were originated and still with us. With evolving of technology, malware programs are also evolving. It is considered as one of the prime issues regarding cyber world security. Damage caused by the malware programs ranges from system failure to financial loss. Traditional approach for malware classification approach are not very suitable for advance malware programs. For the continuously evolving malware ecosystem deep learning approaches are more suitable as they are faster and can predict malware more effectively. To our best of knowledge, there has not substantial research done on deep learning based malware detection on different sectors like: IoT, Bio-medical sectors and Cloud platforms. The key contribution of this chapter will be creating directions of malware detection depending on deep learning. The chapter will be beneficial for graduate level students, academicians and researchers in this application domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGraw G, Morrisett G (2000) Attacking malicious code: a report to the infosec research council. IEEE Softw 17(5):33–41

    Article  Google Scholar 

  2. Xufang L, Loh PKK, Tan F (2011) Mechanisms of polymorphic and metamorphic viruses. In 2011 European intelligence and security informatics conference (EISIC) 149–154

    Google Scholar 

  3. Cohen F (1987) Computer viruses. Comput Secur 6:22–35

    Article  Google Scholar 

  4. EroCarrera, Silberman P (2010) State of malware: family ties

    Google Scholar 

  5. Egele M et al (2008) A survey on automated dynamic malware-analysis techniques and tools. ACM Comput Surv 44(2):1–42

    Article  Google Scholar 

  6. Vinod P et al (2009) Survey on malware detection methods

    Google Scholar 

  7. WebSource: https://www.cisco.com/c/en/us/about/security-center/virus-differences.html

  8. Yin H et al (2007) Panorama: capturing system-wide information flow for malware detection and analysis. In: Proceedings of the 14th ACM conference on computer and communications security. ACM, Alexandria, pp 116–127

    Google Scholar 

  9. Idika N, Mathur AP (2007) A survey of malware detection techniques

    Google Scholar 

  10. Bostami B, Ahmed M, Choudhury S (2019) False data injection attacks in internet of things. In: Al-Turjman F (ed) Performability in internet of things. EAI/Springer innovations in communication and computing. Springer, Cham

    Google Scholar 

  11. Beaucamps P (2007) Advanced polymorphic techniques. Int J Comput Sci 2(3):194–205

    Google Scholar 

  12. Szor P (2005) The art of computer virus research and defense. Addison-Wesley Professional, Upper Saddle River

    Google Scholar 

  13. Shah A (2010) Approximate disassembly using dynamic programming [PhD. Thesis], San Jose State University, US

    Google Scholar 

  14. Szor P (1998) The Marburg situation. Virus Bull:8–10

    Google Scholar 

  15. Filiol E (2005) Computer viruses: from theory to applications. Springer, Paris

    MATH  Google Scholar 

  16. Walenstein A, Mathur R, Chouchane M et al (2007) The design space of metamorphic malware. In: Proceedings of the 2nd international conference on information warfare and security (ICIW 2007), pp 241–248

    Google Scholar 

  17. Lakhotia A, Kapoor A, Kumar E (2004) Are metamorphic viruses really invincible? Virus Bull:5–7

    Google Scholar 

  18. Ferrie P, Corporation S, Monica S (2001) Hunting for metamorphic. Proceedings of the Virus Bulletin Conference 2001, Czech Republic, Prague, 2001 September 27–28, 123144

    Google Scholar 

  19. Gutmann P (2007) The commercial malware industry

    Google Scholar 

  20. Islam MDR, Tian R, Batten LM, Versteeg S (2013) Classification of malware based on integrated static and dynamic features. J Netw Comput Appl 36(2):646–656

    Article  Google Scholar 

  21. Tahir R (2018) A study on malware and malware detection techniques. Int J Educ Manag Eng 8:20–30. https://doi.org/10.5815/ijeme.2018.02.03

    Article  Google Scholar 

  22. Jacob G, Debar H, Filiol E (2008) Behavioral detection of malware: from a survey towards established taxonomy. J Comput Virol 4(3):251–266

    Article  Google Scholar 

  23. Hofmeyr S, Forrest S, Somayaji A (1998) Intrusion detection using sequences of system calls. J Comput Secur 6:151–180

    Article  Google Scholar 

  24. Sato I, Okazaki Y, Goto S (2002) An improved intrusion detection method based on process profiling. IPSJ J 43:3316–3326

    Google Scholar 

  25. Mohata VB (2013) Mobile malware detection techniques. Int J Comput Sci Eng Technol (IJCSET)

    Google Scholar 

  26. Schultz M, Eskin E, Zadok E, Stolfo S (2001) Data mining methods for detection of new malicious executables. In IEEE symposium on security and privacy, pp 38–49. IEEE Computer Society

    Google Scholar 

  27. Henchiri O, Japkowicz N (2006) A feature selection and evaluation scheme for computer virus detection. In: Proceedings of ICDM-2006, Hong Kong, pp 891–895

    Google Scholar 

  28. Ye Y, Wang D, Li T, Ye D (2007) IMDS: intelligent malware detection system. In: Proceedings of the ACM international conference on knowledge discovery data mining, pp 1043–1047

    Google Scholar 

  29. Ye Y, Li T, Jiang Q, Wang Y (2010) CIMDS: adapting post processing techniques of associative classification for malware detection. IEEE Trans Syst Man Cybern C 40(3):298–307

    Article  Google Scholar 

  30. Jeong K, Lee H (2008) Code graph for malware detection. In information networking. In: ICOIN. International conference on, Jan 2008

    Google Scholar 

  31. Lee J, Jeong K, Lee H (2010) Detecting metamorphic malwares using computing, ser. ACM, New York, pp 1970–1977

    Google Scholar 

  32. Ye Y, Li T, Huang K, Jiang Q, Chen Y (2010) Hierarchical associative classifier (HAC) for malware detection from the large and imbalanced gray list. J Intell Inf Syst 35(1):1–20

    Article  Google Scholar 

  33. Ahmed F, Hameed H, Shafiq MZ, Farooq M (2009) Using spatio-temporal information in API calls with machine learning algorithms for malware detection. In: AISec ‘09 Proceedings of the 2nd ACM workshop on Security and artificial intelligence, pp 55–62

    Google Scholar 

  34. Bilar D (2007) OpCodes as predictor for malware. Int J Electron Secur Digit Forensics 1(2):156

    Article  Google Scholar 

  35. Santos I, Brezo F, Nieves J, Penya Y (2010) Idea: OpCode-sequencebased malware detection. In: Engineering secure software and system. Springer, Berlin/Heidelberg

    Google Scholar 

  36. Santos I, Brezo F, Ugarte-Pedrero X, Bringas PG (2011) OpCode sequences as representation of executables for data-mining-based unknown malware detection. Inf Sci 231:64–82

    Article  MathSciNet  Google Scholar 

  37. Santos I, Brezo F, Sanz B, Laorden C, Bringas PG (2011) Using opCode sequences in single-class learning to detect unknown malware. IET Inf Secur 5(4):220

    Article  Google Scholar 

  38. Santos I, Laorden C, Bringas P (2011) Collective classification for unknown malware detection. In: Proceedings of the 6th ACM symposium on information, computer and communications security

    Google Scholar 

  39. Santos I, Sanz B, Laorden C (2011) OpCode-sequence-based semisupervised unknown malware detection. In: Computational intelligence in security for information systems. Springer, Berlin/Heidelberg

    Google Scholar 

  40. Runwal N, Low RM, Stamp M (2012) OpCode graph similarity and metamorphic detection. J Comput Virol 8(1–2):37–52

    Article  Google Scholar 

  41. Shabtai A, Moskovitch R, Feher C, Dolev S, Elovici Y (2012) Detecting unknown malicious code by applying classification techniques on OpCode patterns. Secur Inf 1(1):1

    Article  Google Scholar 

  42. Gerald GBS, Tesauro J, Kephart JO (1996) Neural network for computer virus recognition. IEEE Expert

    Google Scholar 

  43. Arnold W, Tesauro G (2000) Automatically generated Win32 heuristic virus detection. In Virus Bulletin Conference

    Google Scholar 

  44. Abou-assaleh, T, Cercone N, Keß V, Sweidan R (2004) N-gram-based detection of new malicious code, no. 1

    Google Scholar 

  45. Maloof MA, Kolter JZ (2006) Learning to detect malicious executables in the wild. In roc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

    Google Scholar 

  46. Moskovitch EY, Stopel D, Feher C, Nissim N, Japkowicz N (2009) Unknown malcode detection and the imbalance problem. J Comput Virol 5(4):295–308

    Article  Google Scholar 

  47. Bruschi D, Martignoni L, Monga M (2006) Detecting self-mutating malware using control-flow graph matching. In: Büschkes R, Laskov P (eds) Detection of intrusions and malware & vulnerability assessment, volume 4064 of LNCS. Springer, Berlin, pp 129–143

    Google Scholar 

  48. Zhao Z (2011) A virus detection scheme based on features of control flow graph. 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp 943–947

    Google Scholar 

  49. Bonfante G, Kaczmarek M, Marion JY (2007) Control flow graphs as malware signatures. WTCV

    Google Scholar 

  50. Eskandari M, Hashemi S (2011) Metamorphic malware detection using control flow graph mining. Int J Comput Sci Netw Secur 11:1–6

    Google Scholar 

  51. Kim K, Moon BR (2010) Malware detection based on dependency graph using hybrid genetic algorithm. In Proceedings of the 12th annual conference on Genetic and evolutionary computation, July 07–11, 2010

    Google Scholar 

  52. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS (2011) Malware images: visualization and automatic classification. In: Proceedings of the 8th international symposium on visualization for cyber security, VizSec ‘11. ACM.. ISBN 978-1-4503-0679-9, New York, pp 4:1–4:7. https://doi.org/10.1145/2016904.2016908

    Chapter  Google Scholar 

  53. Dahl GE, Stokes JW, Deng L, Yu D (2013) Large-scale malware classification using random projections and neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on Acoustics. IEEE, 3422–3426

    Google Scholar 

  54. Saxe J, Berlin K (2015) Deep neural network based malware detection using two dimensional binary program features. In 2015 10th International Conference on Malicious and Unwanted Software (MALWARE). IEEE

    Google Scholar 

  55. Pascanu R, Stokes JW, Sanossian H, Marinescu M, Thomas A (2015) Malware classification with recurrent networks. In acoustics, speech and signal processing (ICASSP), 2015 IEEE International Conference on Acoustics. IEEE, 1916–1920

    Google Scholar 

  56. Cakir B, Dogdu E (2018) Malware classification using deep learning methods. In: Proceedings of the ACMSE 2018 conference (ACMSE ‘18). ACM, New York. Article 10, 5 pages

    Google Scholar 

  57. Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas C (2017) Malware detection by eating a whole exe. arXiv preprint arXiv:1710.09435

    Google Scholar 

  58. David OE, Netanyahu NS (2015) DeepSign: deep learning for automatic malware signature generation and classification. 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, 2015, pp 1–8

    Google Scholar 

  59. Karbab E Debbabi M Derhab A Mouheb D (2017) Android malware detection using deep learning on API method sequences

    Google Scholar 

  60. Choi S, Jang S, Kim Y, Kim J (2017) Malware detection using malware image and deep learning. 2017 International conference on information and communication technology convergence (ICTC), Jeju, 2017, pp 1193–1195

    Google Scholar 

  61. Le Q, Boydell O, Mac Namee B, Scanlon M (2018) Deep learning at the shallow end: malware classification for non-domain experts. Digit Investig 26:S118–S126

    Article  Google Scholar 

  62. Hardy W, Chen L, Hou S, Ye Y, Li X (2016) Dl4md: a deep learning framework for intelligent malware detection. Athens: The Steering Committee of The World Congress in computer science, computer engineering and applied computing (WorldComp), pp 61–67

    Google Scholar 

  63. Huang W, Stokes JW (2016) MtNet: a multi-task neural network for dynamic malware classification. In: In Proc. of the 13th international conference on detection of intrusions and malware, and vulnerability assessment, DIMVA 2016. Springer, Cham, pp 399–418

    Google Scholar 

  64. Davis A, Wolff M (2015) Deep learning on disassembly data. URL: https://www.blackhat.com/docs/us-15/materials/us-15-Davis-Deep-Learning-On-Disassembly.pdf

  65. Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T (2016) Malware detection with deep neural network using process behavior. In: 2016 IEEE 40th annual computer software and applications conference (COMPSAC), vol 2, pp 577–582. https://doi.org/10.1109/COMPSAC.2016.151

    Chapter  Google Scholar 

  66. Kang H, Jang JW, Mohaisen A, Kim HK (2015) Detecting and classifying android malware using static analysis along with creator information. Int J Distrib Sens Netw 11(6):479174

    Article  Google Scholar 

  67. Faruki P, Laxmi V, Bharmal A, Gaur MS, Ganmoor V (2015) AndroSimilar: robust signature for detecting variants of Android malware. J Inf Secur Appl 22:66–80

    Google Scholar 

  68. Song J, Han C, Wang K, Zhao J, Ranjan R, Wang L (2016) An integrated static detection and analysis framework for Android. Pervasive Mob Comput 32:15–25

    Article  Google Scholar 

  69. Sun M, Li X, Lui JC, Ma RT, Liang Z (2017) Monet: a user-oriented behavior-based malware variants detection system for Android. IEEE Trans Inf Forensics Secur 12(5):1103–1112

    Article  Google Scholar 

  70. Rovelli P, Vigfússon Ý (2014) PMDS: permission-based malware detection system. In: Prakash A, Shyamasundar R (eds) ICISS 2014. LNCS, vol 8880. Springer, Cham, pp 338–357. https://doi.org/10.1007/978-3-319-13841-1_19

    Chapter  Google Scholar 

  71. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) DroidMat: android malware detection through manifest and API calls tracing. In: 2012 seventh Asia joint conference on information security (Asia JCIS), pp. 62–69. IEEE

    Google Scholar 

  72. Talha KA, Alper DI, Aydin C (2015) APK auditor: permission-based Android malware detection system. Digit Investig 13:1–14

    Article  Google Scholar 

  73. Sato R, Chiba D, Goto S (2013) Detecting Android malware by analyzing manifest files. Proc Asia Pac Adv Netw 36(23–31):17

    Google Scholar 

  74. Ping X, Xiaofeng W, Wenjia N, Tianqing Z, Gang L (2014) Android malware detection with contrasting permission patterns. China Commun 11(8):1–14

    Google Scholar 

  75. Vidal JM, Monge MAS, Villalba LJG (2018) A novel pattern recognition system for detecting Android malware by analyzing suspicious boot sequences. Knowl-Based Syst 150: 198–217

    Article  Google Scholar 

  76. Canfora G, Mercaldo F, Visaggio CA (2016) An HMM and structural entropy based detector for android malware: an empirical study. Comput Secur 61:1–18

    Article  Google Scholar 

  77. Karbab EB et al (2017) Android malware detection using deep learning on API method sequences. CoRR abs/1712.08996: n. Pag

    Google Scholar 

  78. Karbab E, Debbabi M, Derhab A, Mouheb D (2018) MalDozer: automatic framework for android malware detection using deep learning. Digit Investig 24:S48–S59. https://doi.org/10.1016/j.diin.2018.01.007

    Article  Google Scholar 

  79. Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci Technol 21(1):114–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bostami, B., Ahmed, M. (2020). Deep Learning Meets Malware Detection: An Investigation. In: Fadlullah, Z., Khan Pathan, AS. (eds) Combating Security Challenges in the Age of Big Data. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35642-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35642-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35641-5

  • Online ISBN: 978-3-030-35642-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics