Skip to main content

Deep Learning Approaches for IoT Security in the Big Data Era

  • Chapter
  • First Online:
Combating Security Challenges in the Age of Big Data

Abstract

The confluence of innovative technologies in wireless communications led to the evolution of the Internet of Things (IoT). According to recent studies, this cartel of things entrenched with electronic components, software, sensors, actuators coupled with the Internet, will increase to 50 billion by 2020. The giant stride in the number of IoT devices makes them the major genesis of data. IoT is triggering a massive influx of big data. To reap out the maximum efficacy of IoT, the massive amount of data is harnessed and converted to actionable insights utilizing the big data analytics. This makes the Internet of Things more intelligent than mere monitoring devices. Big data and IoT works well conjointly to offer analysis and insights. With the conjunction of the Internet of things, big data analytics shift the computing paradigm to the edges for real-time decision making.

He who would search for pearls must dive below

John Dryden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. George G, Thampi SM (2018) A graph-based security framework for securing industrial IoT networks from vulnerability exploitations. IEEE Access 6(September):43586–43601

    Article  Google Scholar 

  2. Sicari S, Rizzardi A, Grieco LA, Coen-porisini A (2015) Security, privacy and trust in internet of things: the road ahead. Comput Netw 76:146–164

    Article  Google Scholar 

  3. Jing Q, Vasilakos AV, Wan J, Lu J, Qiu D (2014) Security of the Internet of Things: perspectives and challenges. Wirel Netw 20(8):2481–2501

    Article  Google Scholar 

  4. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  5. Kim, Kwangju, Muhamad Erza Aminanto, and Harry Chandra Tanuwidjaja.(2018) Network Intrusion Detection Using Deep Learning: A Feature Learning Approach. Springer.

    Google Scholar 

  6. Aminanto, M. E., & Kim, K. (2016) Deep learning-based feature selection for intrusion detection system in transport layer. In Proceedings of the Summer Conference of Korea Information Security Society (CISC-S’16), pp 535–538, 2016

    Google Scholar 

  7. Rooshenas A, Lowd D (2014) Learning sum-product networks with direct and indirect variable interactions. Proc 31st Int Conf Mach Learn 32:710–718

    Google Scholar 

  8. Poon, H., & Domingos, P. (2011, November). Sum-product networks: A new deep architecture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (pp. 689–690). IEEE.

    Google Scholar 

  9. Kim, J. W. Classification with Deep Belief Networks.” https://www.ki.tu-berlin.de/fileadmin/fg135/publikationen/Hebbo_2013_CDB.pdf

  10. A. Elsherif(2018) “Automatic intrusion detection system using deep recurrent neural network paradigm,” Journal of Information Security and Cybercrimes Research (JISCR), vol. 1, no. 1, 2018.

    Google Scholar 

  11. J. P.-A. Ian J. Goodfellow, D.-F. , Mehdi Mirza, Bing Xu, S. Ozair†, and Y. B., Aaron Courville, “Generative Adversarial Nets,” arXhiv, vol. 155, no. 4, pp. 270–275, 2013

    Google Scholar 

  12. Saleema, A., & Thampi, S. M. (2018) Voice Biometrics: The Promising Future of Authentication in the Internet of Things. In Handbook of Research on Cloud and Fog Computing Infrastructures for Data Science (pp. 360–389). IGI Global.

    Google Scholar 

  13. Lee YS et al (2016) Touch based active user authentication using deep belief networks and random forests. Proc 6th Int Conf Inf Commun Manag ICICM 2016:304–308

    Google Scholar 

  14. Maheshwary S, Ganguly S, Pudi V (2017) Deep secure: a fast and simple neural network based approach for user authentication and identification via keystroke dynamics. IWAISe First Int Work Artif Intell Secur 2017:59

    Google Scholar 

  15. Shi C, Liu J, Liu H, Chen Y (2017) Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT. In: Proceedings of the 18th ACM international symposium on mobile Ad Hoc networking and computing – Mobihoc’17, pp 1–10

    Google Scholar 

  16. Das R, Gadre A, Zhang S, Kumar S, Moura JMF (2018) A deep learning approach to IoT authentication. In: IEEE international conference communication, vol. 2018–May

    Google Scholar 

  17. A. Ferdowsi and W. Saad (2018) Deep learning for signal authentication and security in massive Internet of Things systems, pp 1–30

    Google Scholar 

  18. Rajasegarar S, Leckie C, Palaniswami M (2008) Anomaly detection in wireless sensor networks. IEEE Wirel Commun

    Google Scholar 

  19. Yavuz, F. Y. (2018) Deep learning in cybersecurity for internet of things (Doctoral dissertation).

    Google Scholar 

  20. Diro AA, Chilamkurti N (2018) Distributed attack detection scheme using deep learning approach for internet of things. Futur Gener Comput Syst 82:761–768

    Article  Google Scholar 

  21. Kim J, Shin N, Jo SY, Kim SH (2017) Method of Intrusion detection using deep neural network. Int Conf Big Data Smart Comput:313–316

    Google Scholar 

  22. Ma T, Wang F, Cheng J, Yu Y, Chen X (2016) A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors 16(10):1701

    Article  Google Scholar 

  23. Kang M, Kang J (2016) Neural network for in-vehicle network security. PLOS One 11:1–17

    MathSciNet  Google Scholar 

  24. Li, Y., Ma, R., & Jiao, R. (2015) A hybrid malicious code detection method based on deep learning. International Journal of Security and Its Applications, 9(5), 205–216.

    Google Scholar 

  25. Niyaz Q, Sun W, Javaid AY, Alam M (2015) A deep learning approach for network intrusion detection system. In: Proceedings of 9th EAI international conference Bio-inspired Information and Communication Technologies

    Google Scholar 

  26. Wang Z (2015) The applications of deep learning on traffic identification. Black Hat, Washington, DC

    Google Scholar 

  27. Alom MZ, Bontupalli V, Taha TM (2015) Intrusion detection using deep belief networks. In: 2015 National Aerospace & Electronics Conference, pp 339–344

    Google Scholar 

  28. Gao N, Gao L, Gao Q, Wang H (2015) An intrusion detection model based on deep belief networks. In: Proceedings – 2014 2nd international conference on advanced Cloud Big Data, CBD 2014, pp 247–252

    Google Scholar 

  29. Fiore U, Palmieri F, Castiglione A, De Santis A (2013) Neurocomputing Network anomaly detection with the restricted Boltzmann machine. Neurocomputing:1–11

    Google Scholar 

  30. Fiore U, Palmieri F, Castiglione A, De Santis A (2013) Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122:13–23

    Article  Google Scholar 

  31. Dong B, Wang X (2016) Comparison deep learning method to traditional methods using for network intrusion detection. In: 8th IEEE international conference on communication software networks, pp 581–585

    Google Scholar 

  32. Sheikhan M, Jadidi Z, Farrokhi A (2012) Intrusion detection using reduced-size RNN based on feature grouping. Neural Comput Appl 21(6):1185–1190

    Article  Google Scholar 

  33. Chuan-long Y, Yue-fei Z, Jin-long F, Xin-zheng H (2017) A deep learning approach for Intrusion detection using recurrent neural networks. IEEE Access 5:1–1

    Article  Google Scholar 

  34. Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J (2017) Network traffic classifier with convolutional and recurrent neural networks for internet of things. IEEE Access 5:18042–18050

    Article  Google Scholar 

  35. Kim J, Kim J, Thu HLT, Kim H (2016) Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 international conference on platform technology and service, no. February, pp 1–5

    Google Scholar 

  36. Bediako PK (2017) Long short-term memory recurrent neural network for detecting DDoS flooding attacks within TensorFlow Implementation framework

    Google Scholar 

  37. Kim G, Yi H, Lee J, Paek Y, Yoon S (2017) LSTM-based system-call language modeling and ensemble method for host-based intrusion detection. pp 1–12

    Google Scholar 

  38. Cheng M, Li Q, Lv J, Liu W, Wang J (2018) Multi-scale LSTM model for BGP anomaly classification. IEEE Trans Serv Comput, no NetworkML:1–6

    Google Scholar 

  39. Putchala MK (2017) Deep learning approach for Intrusion Detection System (IDS) in the Internet of Things (IoT) network using Gated Recurrent neural networks (GRU) p 63

    Google Scholar 

  40. Cheng M, Xu Q, Lv J, Liu W, Li Q, Wang J (2016) MS-LSTM: a multi-scale LSTM model for BGP anomaly detection, no. NetworkML, pp 1–6

    Google Scholar 

  41. Lopez-martin M, Member S, Carro B (2017) Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEE Access 5

    Google Scholar 

  42. Vinayakumar R, Kp S, Poornachandran P (2017) Applying convolutional neural Network for Network Intrusion detection, pp 1222–1228

    Google Scholar 

  43. Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T (2016) Malware detection with deep neural network using process behavior. In: 2016 IEEE 40th annual computer software and applications conference, pp 577–582

    Google Scholar 

  44. R. Pascanu, M. Marinescu, and A. Thomas (2015) Malware classification with recurrent networks. In: IEEE international conference on Acoustics, Speech and Signal Processing – Proceedings, v2015-August, pp 1916–1920

    Google Scholar 

  45. Yan W, Yu L (2015) On accurate and reliable anomaly detection for gas turbine combustors : a deep learning approach. PHM Conf:1–8

    Google Scholar 

  46. W. C. and P. W. Yao Wang∗ (2016) A deep learning approach for detecting malicious JavaScript code. Secur Commun NETWORKS Secur Comm Networks 2016, 9(22):1520–1534

    Google Scholar 

  47. Li Y, Ma R, Jiao R (2015) A hybrid malicious code detection method based on deep learning. Int J Secur Its Appl 9(5):205–216

    Google Scholar 

  48. Pascanu R, Stokes JW, Sanossian H, Marinescu M, Thomas A (2015) Malware classification with recurrent networks. In: ICASSP, IEEE internation conference Acoustics speech signal process. – Proceedings, vol. 2015–August, pp 1916–1920

    Google Scholar 

  49. Salama MA, Eid HF, Ramadan RA, Darwish A. 103_Hybrid Intelligent Intrusion Detection Scheme.pdf, pp 1–11

    Google Scholar 

  50. Saxe J, Berlin K (2015) Deep neural network based malware detection using two dimensional binary program features

    Google Scholar 

  51. Jung W, Kim S (2015) Poster: deep learning for zero-day flash malware detection. Proc IEEE Symp Secur Priv:2–3

    Google Scholar 

  52. Seok S, Kim H (2016) Visualized malware classification based-on convolutional neural network. J Korea Inst Inf Secur Cryptol 26(1):197–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu M. Thampi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunitha Krishnan, K.S., Thampi, S.M. (2020). Deep Learning Approaches for IoT Security in the Big Data Era. In: Fadlullah, Z., Khan Pathan, AS. (eds) Combating Security Challenges in the Age of Big Data. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35642-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35642-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35641-5

  • Online ISBN: 978-3-030-35642-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics