Skip to main content

Blockchain-Based Distributed Key Management Approach Tailored for Smart Grid

  • Chapter
  • First Online:
Combating Security Challenges in the Age of Big Data

Abstract

Smart grid (SG) is a new technology which enables the electrical power grid to be efficient, resilient and less pollutant. The Advanced Metering Infrastructure (AMI) is one of the key components in smart grids that enables two-way communication between end users and the utility using smart meters installed at end users. Cyber security plays a fundamental role to secure communications in the AMI. To ensure confidentiality and integrity, key management is considered a challenge in the AMI. Unfortunately, most of the existing key management schemes adopt a centralized architecture, which depends on a single entity to distribute keys and update them. In this chapter, we propose a distributed key management approach to secure communications in the SG. First, a key agreement protocol between the utility and smart meters is proposed. Then, we propose an efficient distributed multicast key management scheme so that group members can manage the group communication in a contributory way. This is attributed to blockchain technology that allows a distributed peer-to-peer network in which distrusted entities can interact with each other securely without the need to a trusted intermediary. The security and performance evaluations of our proposed approach demonstrates its effectiveness and scalability by taking into account the computation and communication costs which are main concerns in the big data era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fadlullah ZM, Fouda MM, Kato N, Takeuchi A, Iwasaki N, Nozaki Y (2011) Toward intelligent machine-to-machine communications in smart grid. IEEE Commun Mag 49(4):60–65

    Article  Google Scholar 

  2. Akkaya K, Rabieh K, Mahmoud M, Tonya S (2015) Customized certificate revocation lists for IEEE 802.11s based smart grid AMI networks. IEEE Trans Smart Grid (TSG) 6(5):2366–2374

    Article  Google Scholar 

  3. ​Badsha S, Yi X, Khalil I, Liu D, Nepal S, Bertino E, Lam K (2018) Privacy-preserving location-aware personalized web service recommendations. IEEE Transactions on Services Computing

    Google Scholar 

  4. Baza M, Nabil M, Bewermeier N, Fidan K, Mahmoud M, Abdallah M (2019) Detecting sybil attacks using proofs of work and location in vanets. arXiv preprint arXiv:1904.05845

    Google Scholar 

  5. Badsha S, Yi X, Khalil I (2016) A practical privacy-preserving recommender system. Data Sci Eng 1(3):161–177

    Article  Google Scholar 

  6. Vakilinia I, Badsha S, Sengupta S (2018) Crowdfunding the insurance of a cyber-product using blockchain. In: Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 2018

    Google Scholar 

  7. Al Amiri W, Baza M, Banawan K, Mahmoud M, Alasmary W, Akkaya K (2020) Towards secure smart parking system using blockchain technology. In: 17th annual Consumer Communications & Networking Conference (CCNC), IEEE, Las Vegas, USA

    Google Scholar 

  8. Shafee A, Baza M, Talbert DA, M. M. Fouda, Nabil M, Mahmoud M (2019) Mimic learning to generate a shareable network intrusion detection model, arXiv preprint arXiv: 1905.00919

    Google Scholar 

  9. Baza M, Lasla N, Mahmoud M, Srivasta G, Abdallah M (2019) B-Ride: ride sharing with privacy-preservation, trust and fair payment atop public blockchain. arXiv preprint arXiv:1906.09968

    Google Scholar 

  10. Wan Z, Wang G, Yang Y, Shi S (2014) Skm: scalable key management for advanced metering infrastructure in smart grids. IEEE Trans Ind Electron 61(12):7055–7066

    Article  Google Scholar 

  11. Eldosouky A, Saad W, Mandayam N (2017) Resilient critical infrastructure: Bayesian network analysis and contract-basedoptimization, arXiv preprint arXiv:1709.00303

    Google Scholar 

  12. Baza M, Nabil M, Lasla N, Fidan K, Mahmoud M, Abdallah M (2018) Blockchain-based firmware update tailored for autonomous vehicles, arXiv preprint arXiv:1811.05905

    Google Scholar 

  13. Baza M, Mahmoud M, Srivastava, G, Alasmary W, Younis M (2020) A light blockchain-powered privacy-preserving organization scheme for ride sharing services. In: 91th Vehicular Technology Conference (VTC-Spring), IEEE, Piscataway

    Google Scholar 

  14. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654

    Article  MathSciNet  Google Scholar 

  15. Baza M, Nabil M, Ismail M, Mahmoud M, Serpedin E, Rahman M (2019) Blockchain-based charging coordination mechanism for smart grid energy storage units, arXiv preprint arXiv:1811.02001

    Google Scholar 

  16. Baza M, Pazos-Revilla M, Nabil M, Sherif A, Mahmoud M, Alasmary W (2019) Privacy-preserving and collusion-resistant charging coordination schemes for smart grid, arXiv preprint arXiv:1905.04666

    Google Scholar 

  17. Mohammadali A, Haghighi MS, Tadayon MH, Nodooshan AM (2016) A novel identity-based key establishment method for advanced metering infrastructure in smart grid. IEEE Trans Smart Grid 9:2834–2842

    Article  Google Scholar 

  18. Kamto J, Qian L, Fuller J, Attia J (2011) Light-weight key distribution and management for advanced metering infrastructure. In: GLOBECOM workshops (GC Wkshps), 2011 IEEE. IEEE, Piscataway, pp 1216–1220

    Chapter  Google Scholar 

  19. Xia J, Wang Y (2012) Secure key distribution for the smart grid. IEEE Trans Smart Grid 3(3):1437–1443

    Article  Google Scholar 

  20. Nicanfar H, Jokar P, Beznosov K, Leung VC (2014) Efficient authentication and key management mechanisms for smart grid communications. IEEE Syst J 8(2):629–640

    Article  Google Scholar 

  21. Liu N, Chen J, Zhu L, Zhang J, He Y (2013) A key management scheme for secure communications of advanced metering infrastructure in smart grid. IEEE Trans Ind Electron 60(10):4746–4756

    Article  Google Scholar 

  22. Wong CK, Gouda M, Lam SS (2000) Secure group communications using key graphs. IEEE/ACM Trans Networking (TON) 8(1):16–30

    Article  Google Scholar 

  23. Chen L, Kudla C (2003) Identity based authenticated key agreement protocols from pairings. In: Computer security foundations workshop, 2003. Proceedings. 16th IEEE. IEEE, pp 219–233

    Google Scholar 

  24. Sherman AT, McGrew DA (2003) Key establishment in large dynamic groups using one-way function trees. IEEE Trans Softw Eng 29(5):444–458

    Article  Google Scholar 

  25. Benmalek M, Challal Y (2015) Eskami: efficient and scalable multi-group key management for advanced metering infrastructure in smart grid. In: Trustcom/BigDataSE/ISPA, 2015 IEEE, vol 1. IEEE, Los Alamitos, pp 782–789

    Chapter  Google Scholar 

  26. Baza M, Fouda MM, Eldien AST, Mansour HA (2015) An efficient distributed approach for key management in microgrids. In: Computer engineering conference (ICENCO), 2015 11th international. IEEE, Piscataway, pp 19–24

    Chapter  Google Scholar 

  27. Al Amiri W, Baza M, Banawan K, Mahmoud M, Alasmary W, Akkaya K (2019) Privacy-preserving smart parking system using blockchain and private information retrieval, arXiv preprint arXiv:1904.09703

    Google Scholar 

  28. Guan Z, Si G, Zhang X, Wu L, Guizani N, Du X, Ma Y (2018) Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities, arXiv preprint arXiv:1806.01056

    Google Scholar 

  29. Liang G, Weller SR, Luo F, Zhao J, Dong ZY (2018) Distributed blockchain-based data protection framework for modern power systems against cyber attacks. IEEE Trans Smart Grid 10:3162–3173

    Article  Google Scholar 

  30. Baza M, Salazar A, Mahmoud, M, Abdallah M, Akkaya, K (2020) On sharing models instead of data using mimic learning for smart health applications. In: Proceedings od IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT’20), IEEE, Doha, Qatar

    Google Scholar 

  31. Amer R, Saad W, ElSawy H, Butt M, Marchetti N (2018) Caching to the Sky: Performance Analysis of Cache-Assisted CoMP for Cellular-Connected UAVs. arXiv preprint arXiv:1811.11098

    Google Scholar 

  32. Lasseter RH, Paigi P (2004) Microgrid: a conceptual solution. In: Proceedings of power electronics specialists conference, 2004. PESC04. 2004 IEEE 35th annual, vol 6. IEEE, Piscataway, pp 4285–4290

    Google Scholar 

  33. Amer R, Butt MM, Bennis M, Marchetti N (2017) Delay analysis for wireless d2d caching with inter-cluster cooperation. In: Proceedings of IEEE GLOBECOM 2017–2017 IEEE global communications conference. IEEE, pp 1–7

    Google Scholar 

  34. Amer R, El Sawy H, Kibiłda J, Butt MM, Marchetti N (2018) Cooperative transmission and probabilistic caching for clustered d2d networks, arXiv preprint arXiv:1811.11099

    Google Scholar 

  35. Amer R, Butt MM, El Sawy H, Bennis M, Kibiłda J, Marchetti N (2018) On minimizing energy consumption for d2d clustered caching networks, arXiv preprint arXiv:1808.03050

    Google Scholar 

  36. Amer R, Elsawy H, Butt MM, Jorswieck EA, Bennis M, Marchetti N (2018) Optimizing joint probabilistic caching and communication for clustered d2d networks, arXiv preprint arXiv:1810.05510

    Google Scholar 

  37. Liu D, Alahmadi A, Ni J, Lin X et al (2019) Anonymous reputation system for iiot-enabled retail marketing atop pos blockchain. IEEE Trans Ind Inf 15:3527–3537

    Article  Google Scholar 

  38. Rafaeli S, Hutchison D (2003) A survey of key management for secure group communication. ACM Comput Surv (CSUR) 35(3):309–329

    Article  Google Scholar 

  39. Eldosouky A, Saad W (2018) On the cybersecurity of m-health iot systems with led bitslice implementation. In: 2018 IEEE international conference on consumer electronics (ICCE). IEEE, Piscataway, pp 1–6

    Google Scholar 

  40. Mortazavi SA, Pour AN, Kato T (2011) An efficient distributed group key management using hierarchical approach with diffie-hellman and symmetric algorithm: Dhsa. In: Computer networks and distributed systems (CNDS), 2011 international symposium on. IEEE, Piscataway, pp 49–54

    Chapter  Google Scholar 

  41. Li M, Weng J, Yang A, Lu W, Zhang Y, Hou L, Liu JN, Xiang Y, Deng R (2018) Crowdbc: a blockchain-based decentralized framework for crowdsourcing, In: IEEE transactions on parallel and distributed systems

    Google Scholar 

  42. Weng J, Weng J, Zhang J, Li M, Zhang Y, Luo W (2018) Deepchain: Auditable and privacy-preserving deep learning with blockchain-based incentive. Cryptology ePrint Archive, Report 2018/679

    Google Scholar 

  43. Lee J, Kapitanova K, Son SH (2010) The price of security in wireless sensor networks. Comput Netw 54(17):2967–2978

    Article  Google Scholar 

  44. Eldosouky A, Ferdowsi A, Saad W (2019) Drones in distress: A gametheoretic countermeasure for protecting uavs against gps spoofing, arXiv preprint arXiv:1904.11568

    Google Scholar 

  45. Akkaya K, Rabieh K, Mahmoud M, Tonyali S (2014) Efficient generation and distribution of CRLs for IEEE 802.11s-based Smart Grid AMI Networks. In: Proceedings of IEEE SmartGridComm’14, Italy, November, 2014

    Google Scholar 

  46. Elhoshy S, Ibrahim M, Ashour M, Elshabrawy T, Hammad H, Rizk MM (2016) A dimensioning framework for indoor das lte networks. In: 2016 international conference on selected topics in mobile & wireless networking (MoWNeT). IEEE, Piscataway, pp 1–8

    Google Scholar 

  47. ​Kelarev A, Yi X, Badsha S, Yang X, Rylands L, Seberry, J (2019) A multistage protocol for aggregated queries in distributed cloud databases with privacy protection. Futur Gener Comput Syst 368–380

    Article  Google Scholar 

  48. Li M, Zhu L, Lin X (2018) Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing. IEEE Internet Things J 6:4573–4584

    Article  Google Scholar 

  49. French A, Mozaffari M, Eldosouky A, Saad W (2018) Environment-aware deployment of wireless drones base stations with google earth simulator, arXiv preprint arXiv:1805.10424

    Google Scholar 

  50. Baza M, Baxter J, Lasla N, Mahmoud M, Abdallah M, Younis M (2020) Incentivized and secure blockchain-based firmware update and dissemination for autonomous vehicles. In: Connected and autonomous vehicles in smart cities, CRC press, 2020

    Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. National Science Foundation under Grant CNS-1619250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Baza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baza, M., Fouda, M.M., Nabil, M., Eldien, A.T., Mansour, H., Mahmoud, M. (2020). Blockchain-Based Distributed Key Management Approach Tailored for Smart Grid. In: Fadlullah, Z., Khan Pathan, AS. (eds) Combating Security Challenges in the Age of Big Data. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35642-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35642-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35641-5

  • Online ISBN: 978-3-030-35642-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics