Skip to main content

Pretreatment Strategies: Unlocking of Lignocellulosic Substrate

  • Chapter
  • First Online:
Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol

Abstract

Conversion of lignocelluloses to bioethanol takes place in three main stages, namely pretreatment to remove lignin and expose the crystalline structure of cellulose; enzymatic hydrolysis to convert cellulose and hemicellulose to simple sugars and microbial fermentation of sugars to ethanol. The most important of these steps is the pretreatment step employed to eliminate lignin and reduce the crystallinity of cellulose to make it accessible for enzymatic hydrolysis for its conversion to glucose. The pretreatment step controls the efficiency of subsequent steps and also accounts for the maximum part of the production cost of biofuel from lignocellulosics. A large number of pretreatment methods including physical methods, chemical treatment, physico-chemical processes, thermo-chemical pretreatment and biological pretreatment are available. Among the various pretreatment methods, biological pretreatment is a promising approach because of low operational cost, does not produce waste and other compounds (phenolics) toxic to the fermenting micro-organisms and is less energy-intensive and environment-friendly. This chapter discusses some of the important pretreatment methods for the disruption of complex lignocellulosic structure and production of fermentable sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  2. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  3. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Inter J Molecular Sci 9:1621–1651

    Article  CAS  Google Scholar 

  4. Romani A, Garrote G, Alonso JL, Parajo JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712

    Article  CAS  PubMed  Google Scholar 

  5. Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R, Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4:48109–48127

    Article  CAS  Google Scholar 

  6. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    Article  CAS  Google Scholar 

  7. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karunanithy C, Muthukumarappan K, Julson JL (2008) Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. In: Annual international meeting. American Society of Agricultural and Biological Engineers

    Google Scholar 

  9. Aguilar-Reynosa A, Romani A, Rodriguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA (2017) Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Conver Manage 136:50–65

    Article  CAS  Google Scholar 

  10. Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation–a green and efficient way to pretreat biomass. Bioresour Technol 199:34–41

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863

    Article  CAS  PubMed  Google Scholar 

  12. Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F et al (2018) Bioethanol production from lignocellulosic biomass by environmentfriendly pretreatment methods: a review. Appl Ecol Env Res 16:225–249

    Article  Google Scholar 

  13. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  CAS  PubMed  Google Scholar 

  14. Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sust Energ Rev 54:217–234

    Article  CAS  Google Scholar 

  15. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks: review. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  16. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  CAS  PubMed  Google Scholar 

  17. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Indus Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  18. Us E, Perendeci NA (2012) Improvement of methane production from greenhouse residues: optimization of thermal and H2SO4 pretreatment process by experimental design. Chem Eng J 181–182:120–131

    Article  CAS  Google Scholar 

  19. Zhou S, Zhang Y, Dong Y (2012) Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46:644–648

    Article  CAS  Google Scholar 

  20. Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  21. Amin FR, Khalid H, Zhang H, Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Expr 7:72

    Article  CAS  Google Scholar 

  22. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977

    Article  CAS  PubMed  Google Scholar 

  23. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresouce Technol 100:10–18

    Article  CAS  Google Scholar 

  24. Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  PubMed  CAS  Google Scholar 

  25. Mussatto SI, Roberto IC (2006) Chemical characterization and liberation of pentose sugars from brewers spent grain. J Chem Technol Biotechnol 81:268–274

    Article  CAS  Google Scholar 

  26. Badiei M, Asim N, Jahim JM, Sopian K (2014) Comparison of chemical pretreatment methods for cellulosic biomass. Procedia Soc Behav Sci 9:170–174. https://doi.org/10.1016/j.apcbee.2014.01.030

    Article  CAS  Google Scholar 

  27. Mudhoo A (2012) Biogas production: pretreatment methods in anaerobic digestion. Scrivener Publishing, Massachusetts

    Book  Google Scholar 

  28. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  29. Sun FF, Zhao X, Hong J, Tang Y, Wang L, Sun H et al (2016) Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment. Biotechnol Biofuels 9:59. https://doi.org/10.1186/s13068-016-0472-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631

    Article  CAS  PubMed  Google Scholar 

  31. Shah TA, Tabassum R (2018) Enhancing biogas production from lime soaked corn cob residue. Int J Renew Energy Res 8:761–766

    Google Scholar 

  32. Sakuragi K, Igarashi K, Samejima M (2018) Application of ammonia pretreatment to enable enzymatic hydrolysis of hardwood biomass. Polym Degrad Stab 148:19–25

    Article  CAS  Google Scholar 

  33. Oladi S, Aita GM (2017) Optimization of liquid ammonia pretreatment variables for maximum enzymatic hydrolysis yield of energy cane bagasse. Ind Crops Prod 103:122–132

    Article  CAS  Google Scholar 

  34. Nigam P, Gupta N, Anthwal A (2009) Pretreatment of agro-industrial residues. In: Biotechnology for agro-industrial residues utilisation. Springer, Netherlands, 13–33

    Google Scholar 

  35. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    Article  CAS  PubMed  Google Scholar 

  36. Borand MN, Karaosmanoglu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sustain Ener 10:033–104

    Article  CAS  Google Scholar 

  37. Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10:866–885

    Article  CAS  PubMed  Google Scholar 

  38. Pielhop T, Amgarten J, Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S (2010) Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl Biochem Biotechnol 160(2):539–551

    Article  CAS  PubMed  Google Scholar 

  40. Li HQ, Jiang W, Jia JX, Xu J (2014) pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation. Bioresour Technol 153:292–299

    Article  CAS  PubMed  Google Scholar 

  41. Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA et al (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745

    Article  CAS  Google Scholar 

  42. Sun RC, Tomkinson RC (2002) Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohyd Polym 50:263–271

    Article  CAS  Google Scholar 

  43. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Indus Energy Chem Res 52(10):3563–3580

    Article  CAS  Google Scholar 

  44. Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100:9451–9467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AADS (2005) Extraction of lignin from sugarcane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures. J Supercrit Fluid 36:31–39

    Article  CAS  Google Scholar 

  46. Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  CAS  PubMed  Google Scholar 

  47. El-Naggar NE, Deraz S, Khalil A (2014) Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology 13:1–21

    Article  CAS  Google Scholar 

  48. Larson ED (2008) Biofuel production technologies: status, prospects and implications for trade and development. In: United Nations conference on trade and development (UNCTAD)

    Google Scholar 

  49. Tanjore D, Richard TL (2015) A systems view of lignocellulose hydrolysis. In: Ravindra P (ed) Advances in bioprocess technology. Springer International Publishing, Cham, pp 387–419

    Chapter  Google Scholar 

  50. Yesilada O, Birhanli E, Geckil H (2018) Bioremediation and decolorization of textile dyes by white rot fungi and laccase enzymes. In: mycoremediation and environmental sustainability, fungal biology. Springer, Cham, 121–153

    Google Scholar 

  51. Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73:27–36

    Article  CAS  PubMed  Google Scholar 

  52. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  53. Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fibre and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978

    Article  CAS  PubMed  Google Scholar 

  54. Chandel AK, Kapoor RK, Singh AK, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  CAS  PubMed  Google Scholar 

  55. Carvalho GB, Mussatto SI, Candido EJ, e Silva J JA (2006) Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81:152–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Aggarwal, N.K. (2020). Pretreatment Strategies: Unlocking of Lignocellulosic Substrate. In: Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol. Springer, Cham. https://doi.org/10.1007/978-3-030-35632-3_4

Download citation

Publish with us

Policies and ethics