Skip to main content

Abstract

Lignocellulosic biomass as one of the most abundant, sustainable and cost-effective feedstocks for biofuel and other biochemical production has been quite challenging due to the natural recalcitrance of lignocellulose composed of lignin, cellulose and hemicellulose to enzymatic actions. The extreme recalcitrant nature of lignin has been the major hindrance during lignocellulose depolymerization leading to inefficient enzymatic conversion of the cellulose and hemicellulose fraction of lignocellulose to their sugar monomers for their further utilization in the production of biocommodities. The effective hydrolysis of lignocellulosic biomass requires the synergetic action of three major types of enzymes, viz. cellulases, hemicellulases and lignases (lignocellulolytic enzymes) with specific actions for complete deconstruction of the complex lignocellulosic structure. The present chapter discusses the origin, structure, source and mechanisms of these enzymes and other accessory enzymes involved in complete and efficient depolymerization of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costa SM, Goncalves AR, Esposito E (2005) Ceriporiopsis Subvermispota used in delignification of sugarcane bagasse prior to soda/anthraquinone pulping. In: Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, 695–706

    Google Scholar 

  2. Hao JJ, Tian XJ, Song FQ, He XB, Zhang ZJ, Zhang P (2006) Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. J Eukar Microbiol 53:193–198

    Article  CAS  Google Scholar 

  3. Levin L, Herrmann C, Papinutti VL (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J 39(1):207–214

    Article  CAS  Google Scholar 

  4. Elisashvili V et al (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99:457–462

    Article  CAS  PubMed  Google Scholar 

  5. Elisashvili V, Kachlishvili E, Khardziani T, Agathos SN Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. J Ind Microbiol Biotechnol 37: 1091–1096

    Article  CAS  Google Scholar 

  6. Massadeh MI, Fraij A, Fandi K (2010) Effect of carbon sources on the extracellular lignocellulolytic enzymetic system of Pleurotus Sajor-Caju. Jordan J Biol Sci 3(2):51–54

    CAS  Google Scholar 

  7. Hu HL, Vanden Brink J, Gruben BS, Wosten HAB, Gu JD, Deveries RP (2011) Improved enzyme production by co-cultivation of A. niger and A. oryzae and with other fungi. Inter Biodeterior Biodegradation 65:248–252

    Article  CAS  Google Scholar 

  8. Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57:221–227

    Article  CAS  Google Scholar 

  9. Gomez SQ, Arana-Cuenca A, Flores YM, Rodriguez JNG, Tellez-Jurado A (2012) Effect of particle size and aeration on the biological delignification of corn straw using Trametes sp. 44. Bioresources 7(1):327–344

    Google Scholar 

  10. Faten AM, El Aty Abd, Abeer A (2013) Enzyme activities of the marine-derived fungus Alternaria alternata cultivated on selected agricultural wastes. J App Bio Sci 7(1):39–46

    Google Scholar 

  11. Kheiralla ZH, Badr El-Din SM, Abdel Malek SM, Abdel Aziz DH (2013) Optimization of cultural conditions for lignin peroxidase production by Phanerochaete chrysosporium and Pleurotus ostreatus. Academia J Biotechnol 1(6):087–095

    Google Scholar 

  12. Ma K, Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593

    Article  CAS  PubMed  Google Scholar 

  13. Meehnian H, Jana AK, Jana MM (2016) Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 6: 235

    Google Scholar 

  14. Bonnarme P, Asther M (1993) Influence of primary and secondary proteases produced by free or immobilized cells of the white-rot fungus Phanerochaete chrysosporium on lignin peroxidase activity. J Biotechnol 30:271–282

    Article  CAS  Google Scholar 

  15. Linares NC, Ortiz DM, Doralinda A, Guzman-Ortiz DA, Fernandez F, Loske AM, Gomez-Lim MA (2014) High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. App Microbiol Biotechnol 98:9283–9294

    Article  CAS  Google Scholar 

  16. Hatakka A and Niemenmaa O (1991) Production and purification of peroxidases from the white rot fungi Phlebia radiata and Phlebia tremallosa. In: Finnish-Soviet seminar on bioconversion on plant raw materials—biotechnology advancement, pp 189–204

    Google Scholar 

  17. Galliano H, Gas G, Series JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes Mn peroxidase and laccase. Enzyme Microb Technol 13(6):478–482

    Article  CAS  Google Scholar 

  18. Saparrat MCN, Martinez MJ, Tournier HA, Cabello MN, Arambarri AM (2002) Screening for ligninolytic enzymes in autochthonous fungal strains from Argentina isolated from different substrata. Revista Iberoamericana De Micologia 19:181–185

    PubMed  Google Scholar 

  19. Pant D, Adholeya A (2007) Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation 18:647–659

    Article  CAS  PubMed  Google Scholar 

  20. Patrick F, Mtui G, Mshandete AM, Kivaisi A (2010) Optimized production of lignin peroxidase, manganese peroxidase and laccase in submerged cultures of Trametes trogii using various growth media compositions. Tanz J Sci 36

    Google Scholar 

  21. Akpinar M, Urek RO (2012) Production of ligninolytic enzymes by solid state fermentation using Pleurotus eryngii. Preparative Biochem Biotechnol 42:582–597

    Article  CAS  Google Scholar 

  22. Usha KY, Praveen K, Reddy BR (2014) Enhanced production of ligninolytic enzymes by a Mushroom Stereum ostrea. Biotechnol Res Int 815495

    Google Scholar 

  23. Prasher IB, Chauhan R (2015) Effect of carbon and nitrogen sources on the growth, reproduction and ligninolytic enzymes activity of Dictyoarthrinium synnematicum. Adv Zoo Botany 3(2):24–30

    CAS  Google Scholar 

  24. Korus RA, Lodha SJ, Adhi TP, Crawford DL (1991) Kinetics of peroxidase production by Streptomyces viridosporus and recombinant Streptomyces lividans. Biotechnol Prog 7:510–515

    Article  CAS  Google Scholar 

  25. Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, Jong V, de Vrind JPM, Corstjens PLAM (1997) Partial purification and characterization of mangenese-oxidizing factors of Pseudomonas fluorescens GB-1. App Environ Microbiol 63:4793–4799

    CAS  Google Scholar 

  26. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus substilis is a copper-dependent laccase. J Bacteriol 183:5426–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107

    Article  CAS  PubMed  Google Scholar 

  28. Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616–1626

    Article  CAS  PubMed  Google Scholar 

  29. Sharma RK, Arora DS (2010) Production of lignocellulosic enzymes and enhancement of invitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour Technol 101:9248–9253

    Article  CAS  PubMed  Google Scholar 

  30. Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wotjas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  PubMed  Google Scholar 

  31. Yoshida H (1983) Chemistry of lacquer (urushi). J Chem Soc 43:472–486

    Article  CAS  Google Scholar 

  32. Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO (2002) Production of lignin modifying enzymes by co-cultivated white rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580

    Article  CAS  Google Scholar 

  33. Rodríguez-Couto S, Rodríguez A, Paterson RRM, Lima N, Teixeira JA (2006) High laccase activity in a 6 l airlift bioreactor by free cells of Trametes hirsuta. Lett Appl Microbiol 42:612–616

    PubMed  Google Scholar 

  34. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007) “Blue” laccases. Biochemistry 72(10):1136–1150

    CAS  PubMed  Google Scholar 

  35. Baldrin P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  36. Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151(1):45–57

    Article  CAS  PubMed  Google Scholar 

  37. Lyons JI, Newell SY, Buchan A, Moran MA (2003) Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microb Eco 45(3):270–281

    Article  CAS  Google Scholar 

  38. Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554(3):422–426

    Article  CAS  PubMed  Google Scholar 

  39. Lee KH, Wi SG, Singh AP, Kim YS (2004) Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. J Wood Sci 50(3):281–284

    Article  Google Scholar 

  40. Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 361:4129–4137

    Article  CAS  Google Scholar 

  41. Chanaga Vera X, Placido Escobar J, Marin Montoya M, Perez Y, Del Socorro M (2012) Native fungi with industrial dye degrading potential in the Aburra Valley, Colombia. Revista Facultad Nacional de Agronomia, Medellin 65:6811–6821

    Google Scholar 

  42. Ferraroni M, Myasoedova N, Schmatchenko V, Leontievsky A, Golovleva L, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dias A, Sampaio A, Bezerra R (2007) Environmental applications of fungal and plant systems: decolourisation of textile wastewater and related dyestuffs. In: Environmental bioremediation technologies. Springer, Berlin, Heidelberg, 445–463

    Google Scholar 

  44. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  45. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  PubMed  Google Scholar 

  46. Eriksson KEL (2000) Lignocellulose, lignin, ligninases. In: Encyclopedia of microbiology. Academic press, San Diego, 3, 39–48

    Google Scholar 

  47. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    Article  CAS  PubMed  Google Scholar 

  48. Ahammed S, Prema P (2002) Influence of media nutrients on synthesis of lignin peroxidase from Aspergillus sp. Appl Biochem Biotechnol 103:327–336

    Article  Google Scholar 

  49. Martin H (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  Google Scholar 

  50. Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. Metal ions biological systems. Marcel Dekker, New York, pp 559–587

    Google Scholar 

  51. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  52. Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Hemicellulose and Hemicellulases. Portland Press, Cambridge, 29–51

    Google Scholar 

  53. Li KC, Azadi P, Collins R, Tolan J, Kim JS, Eriksson KEL (2000) Relationships between activities of xylanases and xylan structures. Enzyme Microb Technol 27:89–94

    Article  Google Scholar 

  54. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  55. Kulkarni N, Shendye A, Rao M (1999) Molecular and Bioechnological aspects of xylanases. FEMS Microbiol reviews 23:411–456

    Article  CAS  Google Scholar 

  56. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  57. Deshpande V, Lachke A, Mishra C, Keskar S, Rao M (1986) Mode of action and properties of xylanase and L-xylosidase from Neurospora crassa. Biotechnol Bioeng 26:1832–1837

    Article  Google Scholar 

  58. Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    Article  CAS  Google Scholar 

  59. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  CAS  PubMed  Google Scholar 

  60. Morris DD, Reeves RA, Gibbs MD, Saul DJ, Bergquist PL (1995) Correction of the β-mannanase domain of the cell C pseudogene from Caldocellulosiruptor saccharolyticus and activity of the gene product on kraft pulp. Appl Environ Microbiol 61:2262–2269

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Henrissat B, Bairoch A (1996) Updating the sequencebased classification of glycosyl hydrolases. Biochem J 316:695–696

    Article  PubMed  PubMed Central  Google Scholar 

  62. Benko Z, Siikaaho M, Viikari L, Reczey K (2008) Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enzyme Microb Technol 43:109–114

    Article  CAS  Google Scholar 

  63. Yaoi K, Nakai T, Kameda Y, Hiyoshi A, Mitsuishi Y (2005) Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21. Appl Environ Microbiol 71:7670–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281

    Article  CAS  PubMed  Google Scholar 

  65. Bauer S, Vasu P, Mort AJ, Somerville CR (2005) Cloning, expression, and characterization of an oligoxyloglucan reducing end-specific xyloglucanobiohydrolase from Aspergillus nidulans. Carbohydr Res 340:2590–2597

    Article  CAS  PubMed  Google Scholar 

  66. Garvey M, Klose H, Fischer R et al (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31:581–593

    Article  CAS  PubMed  Google Scholar 

  67. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology and microbiology. Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  68. Wahlstrom R, Rahikainen J, Kruus K, Suurnakki A (2014) Cellulose hydrolysis and binding with Trichoderma reesei Cel5A and Cel7A and their core domains in ionic liquid solutions. Biotechnol Bioeng 111:726–733

    Article  PubMed  CAS  Google Scholar 

  69. Jorgensen H, Kristensen JB, Felby C (2007) Biofuels. Bioprod Biorefin 1:119–134

    Article  CAS  Google Scholar 

  70. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–2037

    Article  CAS  Google Scholar 

  71. Segato F, Damásio ARL, de Lucas RC et al (2014) Genome analyses highlight the different biological roles of cellulases. Microbiol Mol Biol Rev 78:588–613

    Article  PubMed  PubMed Central  Google Scholar 

  72. Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440

    Article  CAS  PubMed  Google Scholar 

  73. Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16

    Article  Google Scholar 

  74. Stern J, Kahn A, Vazana Y et al (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS ONE 10:e0127326. https://doi.org/10.1371/journal.pone.0127326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang YHP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715–725

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Aggarwal, N.K. (2020). Lignocellulolytic Enzymology. In: Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol. Springer, Cham. https://doi.org/10.1007/978-3-030-35632-3_3

Download citation

Publish with us

Policies and ethics