Skip to main content

Laboratory Investigations on the Hydraulic Fracturing of Granite Cores

  • Chapter
  • First Online:
Modelling Rock Fracturing Processes
  • 1114 Accesses

Abstract

This chapter introduces laboratory studies on the hydraulic fracturing of granite cores. Some of the most important factors influencing fracturing are considered, including injection rate, fluid infiltration, fluid viscosity, borehole size, and injection scheme. Results from acoustic emission monitoring help elucidate the fracturing process. Hydraulic fractures of granite samples are observed and analysed at the mineral scale with the aid of X-ray scanning and Computed Tomography. A first attempt to investigate the initiation and propagation of hydraulic fractures in granite drill cores during cyclic injection is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brenne S, Molenda M, Stöckhert F, Alber M (2013) Hydraulic and sleeve fracturing laboratory experiments on 6 rock types. In: Jeffrey R (ed) Effective and sustainable hydraulic fracturing. IntechOpen, London, pp 425–436

    Google Scholar 

  • Chen Y, Nagaya Y, Ishida T (2015) Observations of fractures induced by hydraulic fracturing in anisotropic granite. Rock Mech Rock Eng 48:1455–1461

    Article  Google Scholar 

  • Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Sci Rev 123:1–17

    Article  Google Scholar 

  • Detournay E, Cheng A (1992) Influence of pressurization rate on the magnitude of the breakdown pressure. In: Tillerson JR, Wawersik WR (eds) Rock mechanics. Balkema, Rotterdam, pp 325–333

    Google Scholar 

  • Diaz MB, Jung SG, Zhuang L, Kim KY (2018a) Comparison of acoustic emission activity in conventional and cyclic hydraulic fracturing in cubic granite samples under tri-axial stress state. In: Proceedings of the 52nd US rock mechanics/geomechanics symposium. ARMA, Seattle, pp 18–1160

    Google Scholar 

  • Diaz MB, Jung SG, Zhuang L, Kim KY, Zimmermann G, Hofmann H, Zang A, Stephansson O, Min KB (2018b) Hydraulic, mechanical and seismic observations during hydraulic fracturing by cyclic injection on Pocheon granite. In: Proceedings of the 10th Asian rock mechanics symposium, Singapore

    Google Scholar 

  • Diaz M, Jung SG, Zhuang L, Kim KY, Hofmann H, Min KB, Zang A, Zimmermann G, Stephansson O, Yoon JS (2018c) Laboratory investigation of hydraulic fracturing of granite under true triaxial stress state using different injection schemes – Part 2. Induced seismicity. In: Proceedings of international conference on coupled processes in fractured geological media: observation, modeling, and application, Nov 12–14, Wuhan

    Google Scholar 

  • Gischig V, Preisig G (2015) Hydro-fracturing versus hydro-shearing: a critical assessment of two distinct reservoir stimulation mechanisms. In: Proceedings of the 13th international congress of rock mechanics, ISRM 2015, Montréal, Canada

    Google Scholar 

  • Guo F, Morgenstern NR, Scott J (1993) Interpretation of hydraulic fracturing breakdown pressure. Int J Rock Mech Min Sci Geomech Abstr 30(6):617–626

    Article  Google Scholar 

  • Haimson BC (1999) Six hydraulic fracturing campaigns at the URL, Manitoba. In: Proceedings of 9th ISRM congress, 25–28 August, Paris

    Google Scholar 

  • Haimson B, Doe TW (1983) State of stress, permeability, and fractures in the Precambrian granite of Northern Illinois. J Geophys Res 88(B9):7355–7372

    Article  Google Scholar 

  • Haimson B, Fairhurst C (1967) Initiation and extension of hydraulic fractures in rocks. Soc Pet Eng J 7(03):310–318

    Article  Google Scholar 

  • Haimson B (1975) The state of stress in the earth’s crust. Rev Geophys Space Phys 13(3):350–352

    Article  Google Scholar 

  • Haimson BC, Lee CF (1980) Hydrofracturing stress determination at Darlington, Ontario. In: Proceedings of 13th Canadian symposium on rock mechanics, Canadian Institute of Mining and Metallurgy, pp 42–50

    Google Scholar 

  • Haimson BC, Zhao Z (1991) Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure. In: Roegiers JC (ed) Rock mechanics as a multidisciplinary science. Balkema, Rotterdam, pp 191–199

    Google Scholar 

  • Hofmann H, Zimmermann G, Zang A, Yoon JS, Stephansson O, Kim KY, Zhuang L, Diaz M, Min KB (2018a) Comparison of cyclic and constant fluid injection in granitic rock at different scales. In: Proceedings of the 52nd US rock mechanics/geomechanics symposium. ARMA, Seattle, pp 18–691

    Google Scholar 

  • Hofmann H, Zimmermann G, Zang A, Min KB (2018b) Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments. Geotherm Energy 6:27

    Article  Google Scholar 

  • Hubbert KM, Willis DG (1957) Mechanics of hydraulic fracturing. Petrol Trans AIME 210:153–168

    Article  Google Scholar 

  • Ishida T, Chen Q, Mizuta Y (1997) Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring. Pure Appl Geophys 150:627–646

    Article  Google Scholar 

  • Ishida T, Sasaki S, Matsunaga I, Chen Q, Mizuta Y (2000) Effect of grain size in granitic rocks on hydraulic fracturing mechanism. In: Proceedings of sessions of Geo-Denver 2000, trends in rock mechanics, geotechnical special publication no.102, ASCE, pp 128–139

    Google Scholar 

  • Ishida T, Chen Q, Mizuta Y, Roegiers JC (2004) Influence of fluid viscosity on the hydraulic fracturing mechanism. J Energy Resour Technol 126:190–200

    Article  Google Scholar 

  • Ishida T, Aoyagi K, Niwa T, Chen Y, Murata S, Chen Q, Nakayama Y (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophys Res Lett 39(16), L16309:1–6

    Google Scholar 

  • Morita N, Black AD, Fuh GF (1996) Borehole breakdown pressure with drilling fluids–I. Empirical results. Int J Rock Mech Min Sci Geomech Abstracts 33(1):39–51

    Google Scholar 

  • MISTRAS Group Inc. (2014) Express-8 AE system user’s manual

    Google Scholar 

  • Nguyen-tat T, Ranaivomanana N, Balayssac JP (2017) Identification of shear-induced damage in concrete beams by Acoustic Emission. In: Proceedings of the 2nd International RILEM/COST conference on early age cracking and serviceability in cement-based materials and structures – EAC2, Brussels, Belgium

    Google Scholar 

  • Rummel F (1987) Fracture mechanics approach to hydraulic fracturing stress measurements. In: Atkinson BK (ed) Fracture mechanics of rocks. Academic Press, London, pp 217–239

    Chapter  Google Scholar 

  • Sagar RV, Prasad BR (2011) An experimental study on acoustic emission energy as a quantitative measure of size independent specific fracture energy of concrete beams. Constr Build Mater 25(5):2349–2357

    Article  Google Scholar 

  • Solberg P, Lockner D, Byerlee JD (1980) Hydraulic fracturing in granite under geothermal conditions. Int J Rock Mech Min Sci Geomech Abstr 17(1):25–33

    Article  Google Scholar 

  • Stephansson O, Semikova H, Zimmermann G, Zang A (2019) Laboratory pulse test of hydraulic fracturing on granitic sample cores from Äspö HRL, Sweden. Rock Mech Rock Eng 52:629–633

    Article  Google Scholar 

  • Xie L, Zhuang L, Kim KY, Min KB (2018) Simulating hydraulic fracturing in low permeable rock with consideration of fluid infiltration into rock matrix. In: The 10th Asian rock mechanics symposium, Oct 29–Nov 3, Singapore

    Google Scholar 

  • Zang A, Yoon JS, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195:1282–1287

    Article  Google Scholar 

  • Zang A, Stephansson O, Stenberg L, Plenkers K, Specht S, Milkereit C, Schill E, Kwiatek G, Dresen G, Zimmermann G, Dahm T, Weber M (2017) Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys J Intl 208:790–813

    Article  Google Scholar 

  • Zang A, Zimmermann G, Hofmann H, Stephansson O, Min KB, Kim KY (2019) How to reduce fluid-injection-induced seismicity. Rock Mech Rock Eng 52:475–493

    Article  Google Scholar 

  • Zhao Z, Kim H, Haimson B (1996) Hydraulic fracturing initiation in granite. In: Aubertin, Hassani, Mitri (eds) Rock mechanics. Balkema, Rotterdam, pp 1279–1284

    Google Scholar 

  • Zhuang L, Diaz MB, Jung SG, Kim KY (2016a) Cleavage dependent indirect tensile strength of Pocheon granite based on experiments and DEM simulation. Tunn Undergr Space 26:316–326

    Article  Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Diaz M, Min KB, Park S, Zang A, Stephansson O, Zimmermann G, Yoon JS (2016b) Laboratory study on cyclic hydraulic fracturing of Pocheon granite in Korea. In: Proceedings of the 50th US rock mechanics/geomechanics symposium. ARMA, Houston, pp 16–163

    Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Nam YJ, Min KB, Park S, Zang A, Stephansson O, Zimmermann G, Yoon JS (2017) Laboratory evaluation of induced seismicity reduction and permeability enhancement effects of cyclic hydraulic fracturing. In: Proceedings of the 51st US rock mechanics/geomechanics symposium. ARMA, San Francisco, pp 17–757

    Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Diaz M, Min KB, Park S, Zang A, Stephansson O, Zimmermann G, Yoon JS (2018a) Cyclic hydraulic fracturing of cubic granite samples under triaxial stress state with acoustic emission, injectivity and fracture measurements. In: Proceedings of the 52nd US rock mechanics/geomechanics symposium. ARMA, Seattle, pp 18–297

    Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Diaz M, Hofmann H, Min KB, Zang A, Zimmermann G, Stephansson O, Yoon JS (2018b) Laboratory investigation of hydraulic fracturing of granite under true triaxial stress state using different injection schemes – Part 1. Permeability enhancement. In: Proceedings of international conference on coupled processes in fractured geological media: observation, modeling, and application, Nov 12–14, Wuhan

    Google Scholar 

  • Zhuang L, Kim KY, Shin HS, Jung SG, Diaz M (2018c) Experimental investigation of effects of borehole size and pressurization rate on hydraulic fracturing breakdown pressure of granite. In: Proceedings the 10th Asian rock mechanics symposium, Oct 29–Nov 3, Singapore

    Google Scholar 

  • Zhuang L, Kim KY, Yeom S, Jung SG, Diaz M (2018d) Preliminary laboratory study on initiation and propagation of hydraulic fractures in granite using X-ray Computed Tomography. In: Proceedings of international conference on geomechanics, geo-energy and geo-resources (IC3G2018), Sep 22–24, Chengdu

    Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Diaz M, Min KB (2019a) Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite. Rock Mech Rock Eng 52:575–589

    Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Diaz M, Min KB, Zang A, Stephansson O, Zimmermann G, Yoon JS, Hofmann H (2019b) Cyclic hydraulic fracturing of Pocheon granite cores and its impact on breakdown pressure, acoustic emission amplitudes and injectivity. Int J Rock Mech Min Sci 122:104065

    Google Scholar 

  • Zimmermann G, Zang A, Stephansson O, Klee G, Semiková H (2019) Permeability enhancement and fracture development of hydraulic in situ experiments in the Äspö Hard Rock Laboratory, Sweden. Rock Mech Rock Eng 52:495–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Yeom Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, L., Jung, S., Diaz, M., Kim, K.Y. (2020). Laboratory Investigations on the Hydraulic Fracturing of Granite Cores. In: Shen, B., Stephansson, O., Rinne, M. (eds) Modelling Rock Fracturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35525-8_4

Download citation

Publish with us

Policies and ethics