Skip to main content

Modelling Hydraulic Fracturing in Coals

  • Chapter
  • First Online:
Modelling Rock Fracturing Processes

Abstract

Hydraulic fracturing is regarded as a promising technology in exploiting unconventional natural gas. Compared to the enormous success achieved in shale-gas exploitation, the application of hydraulic fracturing in coal strata has not matured to a satisfactory level. The main reason is that the models commonly used in hydraulic fracturing in shales fail to reflect the quasi-brittle characteristics of coals. In this Chapter, laboratory experiments were conducted to establish the cohesive zone models of the fracture process zone in coals, which account for the quasi-brittle failure behaviors of coals. Afterwards, we reviewed several numerical algorithms in computational fracture mechanics, and applied cohesive interface element method to simulate the propagation of fluid-driven cracks in coals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfano G (2006) On the influence of the shape of the interface law on the application of cohesive-zone models. Compoites Sci Technol 66(6):723–730

    Article  Google Scholar 

  • AlTammar MJ, Sharma MM, Manchanda R (2018) The effect of pore pressure on hydraulic fracture growth: an experimental study. Rock Mech Rock Eng 51(9):2709–2732

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Google Scholar 

  • Bažant ZP, Kazemi MT (1990) Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete. Int J Fract 44(2):111–131

    Article  Google Scholar 

  • Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Constr 16(3):155–177

    Article  Google Scholar 

  • Bažant ZP, Salviato M, Chau VT, Viswanathan H, Zubelewicz A (2014) Why fracturing works. Appl Mech 81(10):101010

    Article  Google Scholar 

  • Carrier B, Granet S (2012) Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng Fract Mech 79:312–328

    Article  Google Scholar 

  • Chen Y, Liang W, Lian H, Yang J, Nguyen VP (2017) Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures. Int J Rock Mech Min Sci 98:121–140

    Article  Google Scholar 

  • Chen Y, Lian H, Liang W, Yang J, Nguyen VP, Bordas SPA (2018) The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses. Int J Rock Mech Min Sci 113:59–71

    Article  Google Scholar 

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomechanics 4(1):35–45

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–108

    Article  Google Scholar 

  • E399 (2009) Standard test method for plane-strain fracture toughness of metallic materials 1. ASTM Int (Reapproved):1–31

    Google Scholar 

  • Elices M, Guinea GV, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163

    Article  Google Scholar 

  • Geertsma J, De Klerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Petrol Eng 21(12):1571–1581

    Google Scholar 

  • Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  • Ishida T, Aoyagi K, Niwa T, Chen Y, Murata S (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophys Res Lett 39(16):L16309

    Article  Google Scholar 

  • Karihaloo BL, Xiao QZ (2008) Asymptotic fields at the tip of a cohesive crack. Int J Fract 150(1–2):55–74

    Article  Google Scholar 

  • Karihaloo BL, Xiao QZ (2010) Asymptotic fields ahead of mixed mode frictional cohesive cracks. ZAMM Zeitschrift für Angew Math und Mech 90(9):710–720

    Article  Google Scholar 

  • Khristianovic SA, Zheltov YP (1955) Formation of vertical fractures by means of highly viscous liquid. In: Proceedings of the Fourth World Petroleum Congress, Rome, pp 579–586

    Google Scholar 

  • Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47(1):267–274

    Article  Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Method Appl M 199(45–48):2765–2778

    Article  Google Scholar 

  • Nguyen VP (2014) An open source program to generate zero thickness cohesive interface elements. Adv Eng Softw 74:27–39

    Article  Google Scholar 

  • Nguyen VP, Wu JY (2018) Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng 340(1):1000–1022

    Article  Google Scholar 

  • Nguyen VP, Lian H, Rabczuk T, Bordas S (2017) Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng Geo l225:68–82

    Article  Google Scholar 

  • Nicolas M, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  • Nordgren RP (1972) Propagation of a vertical hydraulic fracture. Soc Petrol Eng 12(4):306–314

    Article  Google Scholar 

  • Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Petrol Eng 13(09):937–949

    Google Scholar 

  • Planas J, Elices M (1993) Asymptotic analysis of a cohesive crack: 2. Influence of the softening curve. Int J Fract 64(3):221–237

    Article  Google Scholar 

  • Rabczuk T, Zi G (2007) A meshfree method based on the local partion of unity for cohesive cracks. Comput Mech 39(6):743–760

    Article  Google Scholar 

  • Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31(1–2):69–77

    Article  Google Scholar 

  • Settari A, Cleary MP (1986) Development and testing of a pseudo three-dimensional model of hydraulic fracture geometry. SPE Prod Eng 1(06):449–466

    Article  Google Scholar 

  • Sheng M, Li G, Shah S, Lamb AR, Bordas S (2015) Enriched finite elements for branching cracks in deformable porous media. Eng Anal Bound Elem 50(50):435–446

    Article  Google Scholar 

  • Song SH, Wagoner MP, Paulino GH, Buttlar WG (2008a) Crack opening displacement parameter in cohesive zone models: Experiments and simulations in asphalt concrete. Fatigue Fract Eng Mater Struct 31(10):850–856

    Article  Google Scholar 

  • Song SH, Paulino GH, Buttlar WG (2008b) Influence of the cohesive zone model shape parameter on asphalt concrete fracture behavior. Multiscale Funct Graded Mater:730–735

    Google Scholar 

  • Wagoner MP, Buttlar WG, Paulino GH (2005) Disk-shaped compact tension test for asphalt concrete fracture. Exp Mech 45(3):270–277

    Article  Google Scholar 

  • Wu JY (2017) A geometrically regularized gradient-damage model with energetic equivalence. Comput Method Appl M:612–637

    Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  • Yang J, Lian H, Liang W, Nguyen VP, Chen Y (2018) Experimental investigation of the effects of supercritical carbon dioxide on fracture toughness of bituminous coals. Int J Rock Mech Min Sci 107:233–242

    Article  Google Scholar 

  • Yang J, Lian H, Liang W, Nguyen VP, Bordas SPA (2019) Mode I cohesive zone models of different rank coals. Int J Rock Mech Min Sci 115:145–156

    Article  Google Scholar 

  • Zimmerman RW, Chen D-W, Cook NG (1992) The effect of contact area on the permeability of fractures. J Hydrol 139:79–96

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank our collaboration partners in the International Collaboration Project on Coupled Fracture Mechanics Modelling, including but not limited to Dr. Baotang Shen, Dr. Jingyu Shi, Prof. Yunliang Tan, Dr. Johannes Suikkanen, Dr. Eui Seob Park, Dr. Yongbok Jung, Dr. Kwang Yeom Kim, Dr. Li Zhuang, Prof. Xiaochun Li, Dr. Bin Bai, Prof. Chun’an Tang, Prof. Ki-Bok Min, Dr. Linmao Xie, Dr. Jonny Rutqvist, Prof. Simon Loew, Prof. Mikael Rinne, Prof. Ove Stephansson, Prof Günter Zimmermann and Dr. Arno Zang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, W., Lian, H., Yang, J. (2020). Modelling Hydraulic Fracturing in Coals. In: Shen, B., Stephansson, O., Rinne, M. (eds) Modelling Rock Fracturing Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35525-8_16

Download citation

Publish with us

Policies and ethics