Skip to main content

Flux and Energy Density of a Collapsing Electromagnetic Pulse in the Free Space

  • Conference paper
  • First Online:
X-Ray Lasers 2018 (ICXRL 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 241))

Included in the following conference series:

  • 430 Accesses

Abstract

On the basis of the exact solution of the Maxwell equations, we obtained a relationship between the energy and spectrum of a collapsing electromagnetic wave and the energy density in the focusing point. The presented theoretical approach can be useful for a study of ultra short laser pulses without approximation of slowly varying amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.N. Tikhonov, A.A. Samarsky, The Equations of Mathematical Physics Textbook (Moscow State University Press, 2004) (in Russian)

    Google Scholar 

  2. R.W. Ziolkowski, I.M. Besieris, A.M. Shaarawi, Localized wave representations of acoustic and electromagnetic radiation. Proc. IEEE 79, 1371–1378 (1993)

    Article  ADS  Google Scholar 

  3. J. Lekner, TM, TE and TEM beam modes: exact solutions and their problems. J. Opt. A: Pure Appl. Opt. 3, 407–412 (2001)

    Article  ADS  Google Scholar 

  4. A.M. Fedotov, K.Y. Korolev, M.V. Legkov, Exact analytical expression for the electromagnetic field in a focused laser beam or pulse, in Proceedings of SPIE, vol. 6726 (2007), p. 672613

    Google Scholar 

  5. A. April, Ultrashort, strongly focused laser pulses in free space, in Coherence and Ultrashort Pulse Laser Emission (InTech, 2010)

    Google Scholar 

  6. J. Lekner, Theory of Electromagnetic Pulses (Morgan & Claypool Publishers, San Rafael, 2018)

    Google Scholar 

  7. R.J. Ducharme, Constrained Bateman-Hillion solutions for Hermite-Gaussian beams (2014), arXiv:1412.1928

  8. S. Akturk, X. Gu, P. Bowlan, R. Trebino, Spatio-temporal couplings in ultrashort laser pulses. J. Opt. 12, 093001 (2010)

    Article  ADS  Google Scholar 

  9. G. Pariente, V. Gallet, A. Borot, O. Gobert, F. Quéré, Space–time characterization of ultra-intense femtosecond laser beams. Nat. Photonics 10, 547–553 (2016)

    Article  ADS  Google Scholar 

  10. B. Alonso, J. Pérez-Vizcaíno, G. Mínguez-Vega, Í.J. Sola, Tailoring the spatio-temporal distribution of diffractive focused ultrashort pulses through pulse shaping. Opt. Express 26, 10762–10772 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vinogradov .

Editor information

Editors and Affiliations

Annex: Formulas Useful for the Frequency and Bandwidth Analysis (See Sect. 28.5)

Annex: Formulas Useful for the Frequency and Bandwidth Analysis (See Sect. 28.5)

Let \( g\left( t \right) \) be a real-bounded signal with the power equal (or proportional) to \( \left[ {g\left( t \right)} \right]^{2} \) and the total energy G equal to:

$$ G = \mathop \int \limits_{ - \infty }^{\infty } \text{d}t\left[ {g\left( t \right)} \right]^{2} . $$
(28.35)

Then we can write the following expressions for the Fourier transform \( g\left( \omega \right)\):

$$ g\left( t \right) = \mathop \int \limits_{ - \infty }^{\infty } e^{ - i\omega t} g\left( \omega \right)\text{d}\omega ,\quad g\left( \omega \right) = \frac{1}{2\pi }\mathop \int \limits_{ - \infty }^{\infty } e^{i\omega t} g\left( t \right)\text{d}t, $$
(28.36)
$$ g\left( { - \omega } \right) = g^{*} \left( \omega \right),\left| {g\left( { - \omega } \right)} \right|^{2} = \left| {g\left( \omega \right)} \right|^{2} . $$
(28.37)
$$ G = 2\pi \mathop \int \limits_{ - \infty }^{\infty } \text{d}\omega \left| {g\left( \omega \right)} \right|^{2} = 4\pi \mathop \int \limits_{0}^{\infty } \text{d}\omega \left| {g\left( \omega \right)} \right|^{2 } = \mathop \int \limits_{0}^{\infty } \varepsilon \left( \omega \right)\text{d}\omega , $$
(28.38)

where \( \varepsilon \left( \omega \right) \) is the spectral density of the energy.

$$ \varepsilon \left( \omega \right) = 4\pi \left| {g\left( \omega \right)} \right|^{2} . $$
(28.39)

The frequency \( \omega_{0} \) and the bandwidth \( \delta \omega \) can be expressed in terms of the first and second moments of the spectral function \( \varepsilon \left( \omega \right). \)

$$ \omega_{0} = G^{ - 1} \mathop \int \limits_{0}^{\infty } \omega \varepsilon \left( \omega \right)\text{d}\omega = G^{ - 1} 4\pi \mathop \int \limits_{0}^{\infty } \omega \text{d}\omega \left| {g\left( \omega \right)} \right|^{2} , $$
(28.40)
$$ \left( {\delta \omega } \right)^{2} = G^{ - 1} \mathop \int \limits_{0}^{\infty } \left( {\omega - \omega_{0} } \right)^{2} \varepsilon \left( \omega \right)\text{d}\omega = G^{ - 1} 4\pi . $$
(28.41)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Artyukov, I.A., Vinogradov, A.V., Dyachkov, N.V., Feshchenko, R.M. (2020). Flux and Energy Density of a Collapsing Electromagnetic Pulse in the Free Space. In: Kozlová, M., Nejdl, J. (eds) X-Ray Lasers 2018. ICXRL 2018. Springer Proceedings in Physics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-35453-4_28

Download citation

Publish with us

Policies and ethics