Skip to main content

LWFA-Driven Betatron Source for Plasma Physics Platform at ELI Beamlines

  • Conference paper
  • First Online:
X-Ray Lasers 2018 (ICXRL 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 241))

Included in the following conference series:

  • 534 Accesses

Abstract

In this paper, we report on the development of a plasma betatron X-ray source for active diagnostics of various plasma physics and high energy density physics experiments in the Plasma Physics Platform (P3) at ELI Beamlines. This X-ray source will deliver ultrashort X-ray pulses with photon energies ranging from a few keV up to 100’s of keV with over 109 photons per pulse with a rep. rate up to 10 Hz. The driver laser for betatron source is a Ti:sapphire diode-pumped HAPLS laser system [1] that can deliver up to 30 J of energy in less than 30 femtosecond, at a maximum repetition rate of 10 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.L. Haefner et al., High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications, in Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers III, vol. 10241 (International Society for Optics and Photonics, 2017), p. 1024102

    Google Scholar 

  2. A.B. Reighard et al., Observation of collapsing radiative shocks in laboratory experiments. Phys. Plasmas 13(8), 082901 (2006)

    Article  ADS  Google Scholar 

  3. F. Suzuki-Vidal et al., Counterpropagating radiative shock experiments on the orion laser. Phys. Rev. Lett. 119(5), 055001(2017)

    Google Scholar 

  4. U. Chaulagain et al., Structure of a laser-driven radiative shock. High Energy Density Phys. 17, 106–113 (2015)

    Article  ADS  Google Scholar 

  5. R.L. Singh et al., Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser. High Energy Density Phys. 23, 20–30 (2017)

    Article  ADS  Google Scholar 

  6. T. Clayson et al., Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors. High Energy Density Phys. 23, 60–72 (2017)

    Article  ADS  Google Scholar 

  7. J.C. Wood, et al., Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator (2018). https://arxiv.org/abs/1802.02119

  8. D.D. Ryutov et al., Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl. Ser. 127(2), 465 (2000)

    Article  ADS  Google Scholar 

  9. B.A. Remington et al., A review of astrophysics experiments on intense lasers. Phys. Plasmas 7(5), 1641–1652 (2000)

    Article  ADS  Google Scholar 

  10. A. Rousse et al., Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93(13), 135005 (2004)

    Article  ADS  Google Scholar 

  11. K. Ta Phuoc et al., Demonstration of the ultrafast nature of laser produced betatron radiation. Phys. Plasmas 14(8), 080701 (2007)

    Article  ADS  Google Scholar 

  12. O. Lundh et al., Few femtoseconds, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7(3), 219 (2011)

    Article  Google Scholar 

  13. V. Horny et al., Temporal profile of betatron radiation from laser-driven electron accelerators. Phys. Plasmas 24, 063107 (2017)

    Article  ADS  Google Scholar 

  14. S.N. Luo et al., Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the advanced photon source. Rev. Sci. Instrum. 83(7), 073903 (2012)

    Article  ADS  Google Scholar 

  15. U. Chaulagain et al., X-ray phase contrast imaging of biological samples using a betatron x-ray source generated in a laser wakefield accelerator, in Laser Acceleration of Electrons, Protons, and Ions IV, vol. 10240 (International Society for Optics and Photonics, 2017), p. 1024014

    Google Scholar 

  16. S. Weber et al., P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines. Matter Radiat. Extrem. 2(4), 149–176 (2017)

    Article  Google Scholar 

  17. S. Corde et al., Femtosecond x rays from laser-plasma accelerators. Rev. Modern Phys. 85(1) (2013)

    Article  ADS  Google Scholar 

  18. V. Cipiccia et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7(11), 867 (2011)

    Article  Google Scholar 

  19. X. Wang et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4, 1988 (2013)

    Article  ADS  Google Scholar 

  20. J. Nejdl et al., Imaging Michelson interferometer for a low-density gas jet characterization. Rev. Sci. Instr. 90(6), 065107 (2019)

    Article  ADS  Google Scholar 

  21. M. Kozlova et al., Laser-driven plasma-based incoherent x-ray sources at PALS and ELI beamlines, in International Conference on X-ray Lasers. Springer, Cham (2016), pp. 127–134

    Google Scholar 

  22. K. Bohacek et al., Stable electron beams from laser wakefield acceleration with few-terawatt driver using a supersonic air jet. Nucl. Instrum. Methods Phys. Res. Sect. A 883, 24–28 (2018)

    Article  ADS  Google Scholar 

  23. U. Chaulagain et al., ELI gammatron beamline: dawn of ultrafast hard X-ray science (in preparation)

    Google Scholar 

Download references

Acknowledgements

Supported by the project Advanced research using high-intensity laser-produced photons and particles (CZ.02.1.01/0.0/0.0/16_019/0000789) from European Regional Development Fund (ADONIS). The results of the Project LQ1606 were obtained with the financial support of the Ministry of Education, Youth and Sports as part of targeted support from the National Programme of Sustainability II. The results of the Project LM2015083 were obtained with the financial support of the Ministry of Education, Youth and Sports within targeted support of Large infrastructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Chaulagain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaulagain, U. et al. (2020). LWFA-Driven Betatron Source for Plasma Physics Platform at ELI Beamlines. In: Kozlová, M., Nejdl, J. (eds) X-Ray Lasers 2018. ICXRL 2018. Springer Proceedings in Physics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-35453-4_18

Download citation

Publish with us

Policies and ethics