Skip to main content

Betatron X/γ-Ray Radiation from Wakefield-Accelerated Electrons Wiggling in Laser Fields

  • Conference paper
  • First Online:
Book cover X-Ray Lasers 2018 (ICXRL 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 241))

Included in the following conference series:

  • 543 Accesses

Abstract

Betatron radiation based on laser-plasma accelerator has properties of collimated, ultrafast, small sources size, high brightness, and broad energy spectrum. These features make it suitable for many applications, such as phase-contrast imaging or X-ray absorption spectroscopy. In this paper, we present two methods to improve the photon energy and photon number of betatron radiation. As a result, high-brightness photon sources with high yield, adjustable photon energy range from hard X-ray to gamma ray and polarization were generated. The main reason for the enhancement is due to the accelerated electrons efficiently wiggling in a laser field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Tajima, Laser electron accelerator. Phys. Rev. Lett. 43, 175–267 (1979)

    Article  Google Scholar 

  2. G.A. Mourou, Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006)

    Article  ADS  Google Scholar 

  3. E. Esarey, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  4. A.J. Gonsalves, Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019)

    Article  ADS  Google Scholar 

  5. W.T. Wang, High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801 (2016)

    Article  ADS  Google Scholar 

  6. J. Wenz, Dual-energy electron beams from a compact laser-driven accelerator. Nat. Phot. 13, 263–269 (2019)

    Article  Google Scholar 

  7. Y.F. Li, Generation of 20 kA electron beam from a laser wakefield accelerator. Phys. Plasmas 24, 023108 (2017)

    Article  ADS  Google Scholar 

  8. J.P. Couperus, Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8(1), 487 (2017)

    Article  ADS  Google Scholar 

  9. S. Corde, Femtosecond x-rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013)

    Article  ADS  Google Scholar 

  10. A. Rousse, Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004)

    Article  ADS  Google Scholar 

  11. F. Albert, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 58, 103001 (2016)

    Article  ADS  Google Scholar 

  12. E. Esarey, Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505 (2002)

    Article  ADS  Google Scholar 

  13. S. Kneip et al., Bright spatially coherent synchrotron x-rays from a table-top source. Nat. Phys. 6, 980–983 (2010)

    Article  Google Scholar 

  14. K.T. Phuoc, Imaging electron trajectories in a laser-wakefield cavity using betatron x-ray radiation. Phys. Rev. Lett. 97, 225002 (2006)

    Article  ADS  Google Scholar 

  15. K.T. Phuoc, Demonstration of the ultrafast nature of laser produced betatron radiation. Phys. Plasmas 14, 080701 (2007)

    Article  Google Scholar 

  16. S. Cipiccia, Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867 (2011)

    Article  Google Scholar 

  17. L.M. Chen, Bright betatron x-ray radiation from a laser driven-clustering gas target. Sci. Rep. 3, 1912 (2013)

    Article  Google Scholar 

  18. W. Yan, Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble. Proc. Natl. Acad. Sci. U. S. A. 111, 5825–5830 (2014)

    Article  ADS  Google Scholar 

  19. K. Huang, Resonantly enhanced betatron hard x-rays from ionization injected electrons in a laser plasma accelerator. Sci. Rep. 6, 27633 (2016)

    Article  ADS  Google Scholar 

  20. M. Schnell, Optical control of hard x-ray polarization by electron injection in a laser wakefield accelerator. Nat. Commun. 4, 2421 (2013)

    Article  ADS  Google Scholar 

  21. A. Döpp, Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator. Light: Sci. Appl. 6, e17086 (2017)

    Article  Google Scholar 

  22. J. Wenz, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Commun. 6, 7568 (2015)

    Article  ADS  Google Scholar 

  23. A. Döpp, Quick x-ray microtomography using a laser-driven betatron source. Optica 5(2), 199–203 (2018)

    Article  ADS  Google Scholar 

  24. J.M. Cole, High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source. Proc. Natl. Acad. Sci. U. S. A. 115, 6335–6340 (2018)

    Article  ADS  Google Scholar 

  25. M.Z. Mo, Measurements of ionization states in warm dense aluminum with betatron radiation. Phys. Rev. E 95, 053208 (2017)

    Article  ADS  Google Scholar 

  26. B. Mahieu, Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun. 9, 3276 (2018)

    Article  ADS  Google Scholar 

  27. J.C. Wood, Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator. Sci. Rep. 8, 11010 (2018)

    Article  ADS  Google Scholar 

  28. A. Pukhov, Relativistic laser plasma interaction by multi-dimensional particle-in-cell simulations. Phys. Plasmas. 5, 1880 (1998)

    Article  ADS  Google Scholar 

  29. Feng Jie, Gamma ray emission from wakefield accelerated electrons wiggling in laser field. Sci. Rep. 9, 2531 (2019)

    Article  ADS  Google Scholar 

  30. T.W. Huang, Characteristics of betatron radiation from direct-laser-accelerated electrons. Phys. Rev. E 93, 063203 (2016)

    Article  ADS  Google Scholar 

  31. A. Pak, Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010)

    Article  ADS  Google Scholar 

  32. J.L. Shaw, Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection. Phys. Rev. Lett. 118, 064801 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y.F. et al. (2020). Betatron X/γ-Ray Radiation from Wakefield-Accelerated Electrons Wiggling in Laser Fields. In: Kozlová, M., Nejdl, J. (eds) X-Ray Lasers 2018. ICXRL 2018. Springer Proceedings in Physics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-35453-4_17

Download citation

Publish with us

Policies and ethics