Skip to main content

Ultrafast Inner-Shell Electron Excitation with High Energy Recollision Electron Driven by Mid-infrared Laser

  • Conference paper
  • First Online:
X-Ray Lasers 2018 (ICXRL 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 241))

Included in the following conference series:

  • 464 Accesses

Abstract

As one of the most important physical processes of strong-field laser-matter interaction, laser-driven electron-ion recollision is the fundamental process. As we have known, the well-known three-step model of HHG predicts that the cutoff law obeys Ecutoff = Ip + 3.17Up, implying that the maximum kinetic energy of returning electron can be greatly extended by increasing the driving wavelength. With the long wavelength mid-infrared laser pulse, it is easy for the ponderomotive energy of the returning electron to be very large to excite the deep inner-shell electron, which may be used to investigate the ultrafast inner-shell electron dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Ditmire, E.T. Gumbrell, R.A. Smith, J.W.G. Tisch, D.D. Meyerhofer, M.H.R. Hutchinson, Spatial coherence measurement of soft x-ray radiation produced by high order harmonic generation. Phys. Rev. Lett. 77, 4756–4759 (1996)

    Article  ADS  Google Scholar 

  2. M. Bellini, C. Lyngå, A. Tozzi, M.B. Gaarde, T.W. Hänsch, A. L’Huillier, C.-G. Wahlström, Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett. 81, 297–300 (1998)

    Article  ADS  Google Scholar 

  3. P. Salières, A. L’Huillier, M. Lewenstein, Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995)

    Article  ADS  Google Scholar 

  4. Y. Mairesse, A. deBohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovačev, R. Taïeb, B. Carré, H.G. Muller, P. Agostini, P. Salières, Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003)

    Article  ADS  Google Scholar 

  5. H. Niikura, H.J. Wörner, D.M. Villeneuve, P.B. Corkum, Probing the spatial structure of a molecular attosecond electron wavepacket using shaped recollision trajectories. Phys. Rev. Lett. 107, 093004 (2011)

    Article  ADS  Google Scholar 

  6. M. Kitzler, M. Lezius, Spatial control of recollision wavepackets with attosecond precision. Phys. Rev. Lett. 95, 253001 (2005)

    Article  ADS  Google Scholar 

  7. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz, Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003)

    Article  ADS  Google Scholar 

  8. D. Shafir, Y. Mairesse, D.M. Villeneuve, P.B. Corkum, N. Dudovich, Atomic wavefunctions probed through strong-field light–matter interaction. Nat. Phys. 5, 412–416 (2009)

    Article  Google Scholar 

  9. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  Google Scholar 

  10. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature (London) 419, 803 (2002)

    Article  ADS  Google Scholar 

  11. F. Penent, J. Palaudoux, P. Lablanquie, L. Andric, R. Feifel, J.H.D. Eland, Phys. Rev. Lett. 95, 083002 (2005)

    Article  ADS  Google Scholar 

  12. T. Uphues, M. Schultze, M.F. Kling, M. Uiberacker, S. Hendel, U. Heinzmann, N.M. Kabachnik, M. Drescher, New J. Phys. 10, 025009 (2008)

    Article  ADS  Google Scholar 

  13. A.J. Verhoef, A.V. Mitrofanov, X.T. Nguyen, M. Krikunova, S. Fritzsche, N.M. Kabachnik, M. Drescher, A. Baltuška, New J. Phys. 13, 113003 (2011)

    Article  ADS  Google Scholar 

  14. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  15. G. Marcus, W. Helml, X. Gu, Y. Deng, R. Hartmann, T. Kobayashi, L. Strueder, R. Kienberger, F. Krausz, Phys. Rev. Lett. 108, 023201 (2012)

    Article  ADS  Google Scholar 

  16. A.D. Shiner, B.E. Schmidt, C. Trallero-Herrero, H.J. Worner, S. Patchkovskii, P.B. Corkum, J.-C. Kieffer, F. Legare, D.M. Villeneuve, Nat. Phys. 7, 464 (2011)

    Article  Google Scholar 

  17. C. Zhang, P. Wei, Y. Huang, Y. Leng, Y. Zheng, Z. Zeng, R. Li, Z. Xu, Opt. Lett. 34, 2730 (2009)

    Article  ADS  Google Scholar 

  18. S. Dobosz, M. Lezius, M. Schmidt, P. Meynadier, M. Perdrix, D. Normand, J.-P. Rozet, D. Vernhet, Phys. Rev. A 56, R2526 (1997)

    Article  ADS  Google Scholar 

  19. K.S. Budil, P. Salières, M.D. Perry, A. L’Huillier, Phys. Rev. A 48, R3437 (1993)

    Article  ADS  Google Scholar 

  20. G.D. Gillen, M.A. Walker, L.D. Van Woerkom, Phys. Rev. A 64, 043413 (2001)

    Article  ADS  Google Scholar 

  21. C. Guo, G.N. Gibson, Phys. Rev. A 63, 040701 (2001)

    Article  ADS  Google Scholar 

  22. W.A. Bryan et al., Nat. Phys. 2, 379 (2006)

    Article  Google Scholar 

  23. F. Mauger, C. Chandre, T. Uzer, Phys. Rev. Lett. 105, 083002 (2010)

    Article  ADS  Google Scholar 

  24. A.N. Pfeiffer, C. Cirelli, A.S. Landsman, M. Smolarski, D. Dimitrovski, L.B. Madsen, U. Keller, Phys. Rev. Lett. 109, 083002 (2012)

    Article  ADS  Google Scholar 

  25. M.Y. Ivanov, M. Spanner, O. Smirnova, J. Mod. Opt. 52, 165 (2005)

    Article  ADS  Google Scholar 

  26. L. Arissian, C. Smeenk, F. Turner, C. Trallero, A.V. Sokolov, D.M. Villeneuve, A. Staudte, P.B. Corkum, Phys. Rev. Lett. 105, 133002 (2010)

    Article  ADS  Google Scholar 

  27. N.I. Shvetsov-Shilovski, S.P. Goreslavski, S.V. Popruzhenko, W. Becker, Phys. Rev. A 77, 063405 (2008)

    Article  ADS  Google Scholar 

  28. X. Wang, J.H. Eberly, New J. Phys. 12, 093047 (2010)

    Article  ADS  Google Scholar 

  29. Yunpei Deng, Zhinan Zeng, Zhengmao Jia, Pavel Komm, Yinhui Zheng, Xiaochun Ge, Ruxin Li, Gilad Marcus, Ultrafast excitation of an inner-shell electron by laser-induced electron recollision. Phys. Rev. Lett. 116, 073901 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, Z., Deng, Y., Zheng, Y., Marcus, G., Li, R. (2020). Ultrafast Inner-Shell Electron Excitation with High Energy Recollision Electron Driven by Mid-infrared Laser. In: Kozlová, M., Nejdl, J. (eds) X-Ray Lasers 2018. ICXRL 2018. Springer Proceedings in Physics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-35453-4_13

Download citation

Publish with us

Policies and ethics