Skip to main content

Image Semantic Segmentation Based on Convolutional Neural Networks for Monitoring Agricultural Vegetation

  • Conference paper
  • First Online:
Pattern Recognition and Information Processing (PRIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1055))

Abstract

This paper considers problem of recognition agricultural vegetation state from aerial photographs of various spatial resolutions. Semantic segmentation based on convolutional neural networks is used as a basis for recognition. Two neural networks with SegNet and U-Net architectures are presented and investigated for this aim.

The work was partially supported by Belarusian Republican Foundation for Fundamental Research (project No. Ф18В-005) and the State Committee on Science and Technology of the Republic of Belarus (project no Ф18ПЛШГ-008П).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belyayev, B.I., Katkovskiy, L.V.: Optical remote sensing, 455 p. BSU, Minsk (2006). [in Russian]

    Google Scholar 

  2. Schowengerdt, R.A.: Remote Sensing. Models and Methods for Image Processing, 3rd edn, 558 p. Academic Press (2007)

    Google Scholar 

  3. Chao, К., Chen, Y.R., Kim, M.S.: Machine vision technology for agricultural applications. Trans. Comput. Electron. Agric. 36, 173–191 (2002). Elsevier science

    Article  Google Scholar 

  4. Kumar, N., et al.: Do leaf surface’ characteristics affect agrobacterium infection in tea [camellia sinensis (1.)]. J. Biosci. 29(3), 309–317 (2004)

    Article  Google Scholar 

  5. Wu, L., et al.: Identification of weed, corn using BP network based on wavelet features and fractal dimension. Sci. Res. Essay 4(11), 1194–1400 (2009)

    Google Scholar 

  6. Qin, Z., Zhang, M.: Detection of rice sheath blight for in-season disease management using multispectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 7, 115–148 (2005)

    Article  Google Scholar 

  7. Aksoy, S., Akcay, H.G., Wassenaar, T.: Automatic mapping of linear woody vegetation features in agricultural landscapes using very high-resolution imagery. IEEE Trans. Geosci. Remote Sens. 48(1, 2), 511–522 (2010)

    Article  Google Scholar 

  8. Abdullahi, H.S., Zubair, O.M.: Advances of image processing in precision agriculture: using deep learning convolution neural network for soil nutrient classification. J. Multidisciplinary Eng. Sci. Technol. (JMEST) 4(8), 7981–7987 (2017)

    Google Scholar 

  9. Wright, D., Rasmussen, V., Ramsey, R., Baker, D., Ellsworth, J.: Canopy reflectance estimation of wheat nitrogen content for grain protein management. GISci. Remote Sens. 41(4), 287–300 (2004)

    Article  Google Scholar 

  10. Khobragade, A., Pooja, M.G., Singh, R.K.: Feature extraction algorithm for estimation of agriculture acreage from remote sensing images, pp. 5–9 (2016)

    Google Scholar 

  11. Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., Zhang, L.: A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE 13(4), e0196302 (2018)

    Article  Google Scholar 

  12. Sa, I., et al.: weedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot. Autom. Lett. 3(1), 588–595 (2018)

    Article  Google Scholar 

  13. Potena, C., Nardi, D., Pretto, A.: Fast and accurate crop and weed identification with summarized train sets for precision agriculture. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds.) IAS 2016. AISC, vol. 531, pp. 105–121. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48036-7_9

    Chapter  Google Scholar 

  14. Dias, P.A., Tabb, A., Medeiros, H.: Multispecies fruit flower detection using a refined semantic segmentation network. IEEE Robot. Autom. Lett. 3(4), 3003–3010 (2018)

    Article  Google Scholar 

  15. Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34(6), 1039–1060 (2017)

    Article  Google Scholar 

  16. Zhang, C., et al.: Segmentation model based on convolutional neural networks for extracting vegetation from Gaofen-2 images. J. Appl. Remote Sens. 12(4), 042804 (2018)

    Google Scholar 

  17. Lin, K., Gong, L., Huang, Y., Liu, C., Pan, J.: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. J. Front. Plant Sci. 10, 10 p (2019). Article 155

    Google Scholar 

  18. Xu, L., Ming, D., Zhou, W., Bao, H., Chen, Y., Ling, X.: Farmland extraction from high spatial resolution remote sensing images based on stratified scale pre-estimation. J. Remote Sens. 11(2), 10–19 (2019)

    Google Scholar 

  19. Sobkowiak, B., et al.: Zastosowanie technik analizy obrazu do wczesnego wykrywania patogenow ziemniaka. Praca nie publicowana. PIMR, Poznan (2006)

    Google Scholar 

  20. Sobkowiak, B., et al.: Zastosowanie technik analizy obrazu do wczesnego wykrywania zarazy ziemnechanej w warynkach polowych. Praca nie publicowana. PIMR, Poznan (2007)

    Google Scholar 

  21. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, 800 p. The MIT Press (2016)

    Google Scholar 

  22. Nikolenko, S, Kadurin, A., Archangelskaya, E.: Deep Learning, 480 p. Piter, Saint Petersburg (2018). (in Russian)

    Google Scholar 

  23. Tensorflow API documentation. https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits_v2. Accessed 04 Aug 2019

  24. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Ganchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganchenko, V., Doudkin, A. (2019). Image Semantic Segmentation Based on Convolutional Neural Networks for Monitoring Agricultural Vegetation. In: Ablameyko, S., Krasnoproshin, V., Lukashevich, M. (eds) Pattern Recognition and Information Processing. PRIP 2019. Communications in Computer and Information Science, vol 1055. Springer, Cham. https://doi.org/10.1007/978-3-030-35430-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35430-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35429-9

  • Online ISBN: 978-3-030-35430-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics