Skip to main content

Generalized Approach for Analysing Quantum Key Distribution Experiments

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2019 (INDOCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11898))

Included in the following conference series:

  • 650 Accesses

Abstract

In this initiative, a generalized approach towards step by step synthesis of Quantum Key Distribution (QKD) experiments is presented. Schematic diagram of the optical setup of any QKD protocol is easily available in the literature whereas step by step synthesis of the circuit needs further attention. For practical implementation, this understanding is necessary. In the current effort, we describe a disciplined methodology to synthesize the optical experimental setup of QKD protocols. This approach can be extended towards any optical experiment. The beam splitter and phase retarders are described in terms of annihilation and creation operators. We represent the polarization of photon in the Fock state basis. We consider two QKD protocols; Passive BB84 with coherent light (Progress in Informatics, 2011) and Reference Frame Independent 6–4 QKD (RFI-QKD) (https://arxiv.org/abs/1905.09197) to test the methodology. We observe that this disciplined methodology can successfully describe the experiments. This can be exploited to build a convenient synthesis tool for modelling any optical arrangement for security analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auccaise, R., et al.: Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012)

    Article  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, issue 8 (1984)

    Google Scholar 

  3. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 250–272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_15

    Chapter  Google Scholar 

  4. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 575–584. ACM, New York (2013)

    Google Scholar 

  5. Brańczyk, A.M.: Hong-Ou-Mandel Interference (2017). arXiv:1711.00080v1

  6. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  Google Scholar 

  7. Curty, M., Ma, X., Lo, H.-K., Lütkenhaus, N.: Passive preparation of BB84 signal states with coherent light. Prog. Inf. (8), 57–63 (2011)

    Google Scholar 

  8. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271272 (1982)

    Article  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ionicioiu, R., Terno, D.R.: Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107, 230406 (2011)

    Article  Google Scholar 

  11. Jennewein, T., Weihs, G., Zeilinger, A.: Photon statistics and quantum teleportation experiments. J. Phys. Soc. Jpn. 72, 168–173 (2003). Proceedings Waseda International Symposium on Fundamental Physics-New Perspectives in Quantum Physics

    Google Scholar 

  12. Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D.B., Tanzilli, S.: Entanglement-enabled delayed choice experiment. Science 338, 637640 (2012)

    Article  Google Scholar 

  13. Kuĉra, P.: Quantum description of optical devices used in interferometry. Radioengineering 16, 1–6 (2007)

    Google Scholar 

  14. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  Google Scholar 

  15. Nguyen, P.Q.: Lattice reduction algorithms: theory and practice. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 2–6. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_2

    Chapter  Google Scholar 

  16. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_4

  17. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 333–342. ACM, New York (2009)

    Google Scholar 

  18. Peruzzo, A., Shadbolt, P.J., Brunner, N., Popescu, S., O’Brien, J.L.: A quantum delayed choice experiment. Science 338, 634–637 (2012)

    Article  Google Scholar 

  19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 84–93. ACM, New York (2005)

    Google Scholar 

  20. Roy, S., Shukla, A., Mahesh, T.S.: NMR implementation of a quantum delayed-choice experiment. Phys. Rev. A 85, 022109 (2012)

    Article  Google Scholar 

  21. Sendrier, N.: Code-based cryptography: state of the art and perspectives. IEEE Secur. Priv. 15(4), 44–50 (2017)

    Article  Google Scholar 

  22. Shadbolt, P., Mathews, J.C.F., Laing, A., O’Brien, J.L.: Testing foundations of quantum mechanics with photons. Nat. Phys. 10, 278286 (2014)

    Article  Google Scholar 

  23. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science (FOCS) 1994, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  24. Tang, J.S., et al.: Realization of quantum Wheelers delayed choice experiment. Nat. Photon 6, 600604 (2012)

    Article  Google Scholar 

  25. Rab, A.S., et al.: Entanglement of photons in their dual wave-particle nature. Nat. Commun. 8, 915 (2017)

    Article  Google Scholar 

  26. Tannous, R.: Polarization entangled photon sources for free-space quantum key distribution, Master Thesis, University of Waterloo (2018)

    Google Scholar 

  27. Tannous, R., Ye, Z., Jin, J., Kuntz, K.B., Lütkenhaus, N., Jennewein, T.: Demonstration of a 6–4 state reference frame independent channel for quantum key distribution (2019). https://arxiv.org/pdf/1905.09197.pdf

  28. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: One-sided device-independent QKD and position-based cryptography from monogamy games. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 609–625. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_36

    Chapter  Google Scholar 

  29. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  Google Scholar 

  30. Vintskevich, S.V., Grigoriev, D.A., Miklin, N.I., Fedorov, M.V.: Entanglement of multiphoton polarization Fock states and their superpositions. arXiv:1812.11462v2 (2019)

  31. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802803 (1982)

    Article  MATH  Google Scholar 

  32. Supplementary material of [26]. https://doi.org/10.1038/s41467-017-01058-6

  33. https://www.idquantique.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maitra, A., Das, S.S. (2019). Generalized Approach for Analysing Quantum Key Distribution Experiments. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35423-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35422-0

  • Online ISBN: 978-3-030-35423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics