Skip to main content

Vectorial Boolean Functions with Very Low Differential-Linear Uniformity Using Maiorana-McFarland Type Construction

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2019 (INDOCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11898))

Included in the following conference series:

Abstract

The differential-linear connectivity table (DLCT) of a vectorial Boolean function was recently introduced by Bar-On et al. at EUROCRYPT’19. In this paper we construct a new class of balanced vectorial Boolean functions with very low differential-linear uniformity and provide a combinatorial count of hardware gates which is required to implement such circuits. Here, all the coordinate functions are constructed by modifying the Maiorana-McFarland bent functions. Further, we derive some properties of DLCT and differential-linear uniformity of modified inverse functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11

    Chapter  Google Scholar 

  2. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_16

    Chapter  Google Scholar 

  3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canteaut, A., Kölsch, L., Wiemer, F.: Observations on the DLCT and absolute indicators. Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/848.pdf

  5. Canteaut, A., et al.: On the differential-linear connectivity table of vectorial boolean functions. CoRR (2019). http://arxiv.org/abs/1907.05986

  6. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, Y., Hammer, P.L. (eds.) Chapter of the Monograph: Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–470. Cambridge University Press (2010)

    Google Scholar 

  7. Carlitz, L.: Kloosterman sums and finite field extensions. Acta Arith. 2(16), 179–194 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charpin, P., Helleseth, T., Zinoviev, V.: Propagation characteristics of \(x\rightarrow x^{-1}\) and Kloosterman sums. Finite Fields Appl. 13(2), 366–381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charpin, P., Kyureghyan, G.M., Suder, V.: Sparse permutations with low differential uniformity. Finite Fields Appl. 28, 214–243 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dillon, J.F.: Elementary Hadamard difference sets. Ph.D. thesis, University of Maryland (1974)

    Google Scholar 

  11. Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_5

    Chapter  Google Scholar 

  12. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_24

    Chapter  Google Scholar 

  13. Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 243–263. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_12

    Chapter  Google Scholar 

  14. Kyureghyan, G.M., Zieve, M.: Permutation polynomials of the form \(x+y(x^k)\). In: Contemporary Developments in Finite Fields and Applications, pp. 178–194. World Scientific Publication, Hackensack (2016)

    Google Scholar 

  15. Kavut, S., Maitra, S., Tang, D.: Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile. Des. Codes Crypt. 87(2–3), 261–276 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary goppa codes. IEEE Trans. Inf. Theory 36(3), 686–692 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3

    Chapter  Google Scholar 

  18. Leurent, G.: Improved differential-linear cryptanalysis of 7-round chaskey with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_14

    Chapter  Google Scholar 

  19. Canteaut, A., et al.: On the differential linear connectivity table of vectorial Boolean functions. arXiv:1907.05986 [cs.IT] (2019)

  20. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  21. McFarland, R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15(1), 1–10 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_6

    Chapter  Google Scholar 

  23. Pasalic, E., Maitra, S.: Linear codes in generalized construction of resilient functions with very high nonlinearity. IEEE Trans. Inf. Theory 48(8), 2182–2191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng, J., How Tan, C.: New differentially 4-uniform permutations by modifying the inverse function on subfields. Cryptogr. Commun. 9(3), 363–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, J., How Tan, C.: New explicit constructions of differentially 4-uniform permutations via special partitions of \(\mathbb{F}_{2^{2k}}\). Finite Fields Appl. 40, 73–89 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qu, L., Tan, Y., Li, C., Gong, G.: More constructions of differentially 4-uniform permutations on \(\mathbb{F}_{2^{2k}}\). Des. Codes Crypt. 78(2), 391–408 (2016)

    MATH  Google Scholar 

  27. Qu, L., Tan, Y., How Tan, C., Li, C.: Constructing differentially 4-uniform permutations over \(\mathbb{F}_{2^{2k}}\) via the switching method. IEEE Trans. Inf. Theory 59(7), 4675–4686 (2013)

    Article  MATH  Google Scholar 

  28. Tang, D., Kavut, S., Mandal, B., Maitra, S.: Modifying Maiorana-McFarland type bent functions for good cryptographic properties and efficient implementation. SIAM J. Discrete Math. (SIDMA) 33(1), 238–256 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tang, D., Maitra, S.: Constructions of \(n\)-variable (\(n\equiv 2 {\rm mod} \;4\)) balanced Boolean functions with maximum absolute value in autocorrelation spectra \(<2^{\frac{n}{2}}\). IEEE Trans. Inf. Theory 64(1), 393–402 (2018)

    Article  MATH  Google Scholar 

  30. Tang, D., Carlet, C., Tang, X.: Differentially 4-uniform bijections by permuting the inverse function. Des. Codes Crypt. 77(1), 117–141 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. US National Bureau of Standards, Data Encryption Standard. Federal Information Processing Standards Publications, vol. 46 (1977)

    Google Scholar 

  32. Zha, Z., Hu, L., Sun, S.: Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields Appl. 25, 64–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W., Pasalic, E.: Highly nonlinear balanced S-boxes with good differential properties. IEEE Trans. Inf. Theory 60(12), 7970–7979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers of Indocrypt 2019 for their valuable suggestions and comments, which considerably improved the quality of our paper. The work of Deng Tang was supported by the National Natural Science Foundation of China (grants 61872435 and 61602394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, D., Mandal, B., Maitra, S. (2019). Vectorial Boolean Functions with Very Low Differential-Linear Uniformity Using Maiorana-McFarland Type Construction. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35423-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35422-0

  • Online ISBN: 978-3-030-35423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics