Skip to main content

Sport in Extreme Environments: Cardiovascular Issues

  • Chapter
  • First Online:
Textbook of Sports and Exercise Cardiology
  • 1342 Accesses

Abstract

Exposure to extreme environments has become increasingly attractive. The remotest places on earth like the poles, the high mountain peaks, the hot deserts, or the deep sea are particularly fascinating. Although the most extreme environments remain rather reserved to a few extraordinary people, improved access and infrastructure nowadays allow millions of visitors to pursue recreational outdoor activities in extremely cold or hot regions, in hypobaric hypoxia (high altitudes) or hyperbaria (diving). Humans are homeotherms, meaning that their core temperature has to be held constant within a relatively narrow range (35.0–37.5 °C). Exposure to cold air or cold water is associated with the risk of hypothermia (core temperature below 35 °C), which is especially pronounced in cold water. In contrast, heat exposure may provoke the risk of hyperthermia (core temperature above 37.5 °C), which is especially distinct during exercise. With increasing altitude (hypobaric hypoxia) aerobic capacity (maximal oxygen uptake, VO2max) declines by about 1.5–3.5% every 300 m of altitude gain. On the other hand, when exercising at depth (diving, hyperbaria) oxygen supply needs to be maintained by artificial means. Without breathing gas supply, exposures are limited to the individual breath-hold time. Due to the greater health risk when exercising under extreme conditions, pre-exposure medical assessment of exercise performance and cardiorespiratory functioning are of utmost importance. Both exercise training to achieve an appropriate cardiovascular fitness and habituation/acclimatization to the specific environmental conditions are important preventative measures for both athletes and patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burtscher M, Gatterer H, Burtscher J, Mairbäurl H. Extreme terrestrial environments: life in thermal stress and hypoxia. A narrative review. Front Physiol. 2018;9:572.

    PubMed  PubMed Central  Google Scholar 

  2. Tetzlaff K, Thorsen E. Breathing at depth: physiologic and clinical aspects of diving while breathing compressed gas. Clin Chest Med. 2005;26(3):355–80.

    PubMed  Google Scholar 

  3. Münzel T, Daiber A. Environmental stressors and their impact on health and disease with focus on oxidative stress. Antioxid Redox Signal. 2018;28(9):735–40.

    PubMed  Google Scholar 

  4. Burtscher M. Exercise limitations by the oxygen delivery and utilization systems in aging and disease: coordinated adaptation and deadaptation of the lung-heart muscle axis – a mini-review. Gerontology. 2013;59(4):289–96.

    PubMed  Google Scholar 

  5. Burtscher M, Ponchia A. The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis. 2010;52(6):507–11.

    PubMed  Google Scholar 

  6. Vanat L. International report on snow & mountain tourism. 2018. http://vanat.ch/RM-world-report-2018.pdf.

  7. Eglin CM, Tipton MJ. Repeated cold showers as a method of habituating humans to the initial responses to cold water immersion. Eur J Appl Physiol. 2005;93(5-6):624–9.

    PubMed  Google Scholar 

  8. Castellani JW, Tipton MJ. Cold stress effects on exposure tolerance and exercise performance. Compr Physiol. 2015;6(1):443–69.

    PubMed  Google Scholar 

  9. Stocks JM, Taylor NA, Tipton MJ, Greenleaf JE. Human physiological responses to cold exposure. Aviat Space Environ Med. 2004;75(5):444–57.

    PubMed  Google Scholar 

  10. Cheung SS. Responses of the hands and feet to cold exposure. Temperature (Austin). 2015;2(1):105–20.

    Google Scholar 

  11. Golden FS, Hampton IF, Hervey GR, Knibbs AV. Shivering intensity in humans during immersion in cold water [proceedings]. J Physiol. 1979;290(2):48P.

    PubMed  Google Scholar 

  12. McArdle WD, Magel JR, Gergley TJ, Spina RJ, Toner MM. Thermal adjustment to cold-water exposure in resting men and women. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(6):1565–71.

    CAS  PubMed  Google Scholar 

  13. El Helou N, Tafflet M, Berthelot G, Tolaini J, Marc A, Guillaume M, et al. Impact of environmental parameters on marathon running performance. PLoS One. 2012;7(5):e37407.

    PubMed  PubMed Central  Google Scholar 

  14. Pendergast DR. The effect of body cooling on oxygen transport during exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):S171–6.

    CAS  PubMed  Google Scholar 

  15. Marchant B, Donaldson G, Mridha K, Scarborough M, Timmis AD. Mechanisms of cold intolerance in patients with angina. J Am Coll Cardiol. 1994;23(3):630–6. https://doi.org/10.1016/0735-1097(94)90747-1.

  16. Ikäheimo TM. Cardiovascular diseases, cold exposure and exercise. Temperature (Austin). 2018;5(2):123–46.

    Google Scholar 

  17. Mazic S, Suzic Lazic J, Dekleva M, Antic M, Soldatovic I, Djelic M, et al. The impact of elevated blood pressure on exercise capacity in elite athletes. Int J Cardiol. 2015;180:171–7.

    PubMed  Google Scholar 

  18. Luo Y, Li H, Huang F, Van Halm-Lutterodt N, Qin X, Wang A, et al. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: a large database study in Beijing, China between years 2013 and 2014-utilizing a distributed lag non-linear analysis. Environ Pollut. 2018;232:90–6.

    CAS  PubMed  Google Scholar 

  19. Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. 2008;50(6):404–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rundfeldt LC, Maggioni MA, Coker RH, Gunga HC, Riveros-Rivera A, Schalt A, et al. Cardiac Autonomic modulations and psychological correlates in the Yukon Arctic Ultra: the longest and the coldest ultramarathon. Front Physiol. 2018;9:35.

    PubMed  PubMed Central  Google Scholar 

  21. Taylor NA. Human heat adaptation. Compr Physiol. 2014;4(1):325–65.

    PubMed  Google Scholar 

  22. Donaldson GC, Keatinge WR, Saunders RD. Cardiovascular responses to heat stress and their adverse consequences in healthy and vulnerable human populations. Int J Hyperthermia. 2003;19(3):225–35.

    CAS  PubMed  Google Scholar 

  23. Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–928.

    PubMed  Google Scholar 

  24. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.

    CAS  PubMed  Google Scholar 

  25. Stöhr EJ, González-Alonso J, Pearson J, Low DA, Ali L, Barker H, et al. Dehydration reduces left ventricular filling at rest and during exercise independent of twist mechanics. J Appl Physiol (1985). 2011;111(3):891–7.

    Google Scholar 

  26. González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):45–53.

    PubMed  Google Scholar 

  27. Rowell LB. Hyperthermia: a hyperadrenergic state. Hypertension. 1990;15(5):505–7.

    CAS  PubMed  Google Scholar 

  28. Cui J, Arbab-Zadeh A, Prasad A, Durand S, Levine BD, Crandall CG. Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation. 2005;112(15):2286–92.

    PubMed  Google Scholar 

  29. Harris MB, Starnes JW. Effects of body temperature during exercise training on myocardial adaptations. Am J Physiol Heart Circ Physiol. 2001;280(5):H2271–80.

    CAS  PubMed  Google Scholar 

  30. Yankelson L, Sadeh B, Gershovitz L, Werthein J, Heller K, Halpern P, et al. Life-threatening events during endurance sports: is heat stroke more prevalent than arrhythmic death? J Am Coll Cardiol. 2014;64(5):463–9.

    PubMed  Google Scholar 

  31. Siegel AJ, d'Hemecourt P, Adner MM, Shirey T, Brown JL, Lewandrowski KB. Exertional dysnatremia in collapsed marathon runners: a critical role for point-of-care testing to guide appropriate therapy. Am J Clin Pathol. 2009;132(3):336–40.

    PubMed  Google Scholar 

  32. Périard JD, Travers GJS, Racinais S, Sawka MN. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci. 2016;196:52–62.

    PubMed  Google Scholar 

  33. Lenfant C, Sullivan K. Adaptation to high altitude. N Engl J Med. 1971;284(23):1298–309.

    CAS  PubMed  Google Scholar 

  34. Bärtsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007;116(19):2191–202.

    PubMed  Google Scholar 

  35. Naeije R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010;52(6):456–66.

    PubMed  Google Scholar 

  36. Balanos GM, Pugh K, Frise MC, Dorrington KL. Exaggerated pulmonary vascular response to acute hypoxia in older men. Exp Physiol. 2015;100(10):1187–98.

    PubMed  Google Scholar 

  37. Netzer N, Strohl K, Faulhaber M, Gatterer H, Burtscher M. Hypoxia-related altitude illnesses. J Travel Med. 2013;20(4):247–55.

    PubMed  Google Scholar 

  38. Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23(2):259–66.

    CAS  PubMed  Google Scholar 

  39. Ferretti G, Moia C, Thomet JM, Kayser B. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol. 1997;498(Pt 1):231–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Horstman D, Weiskopf R, Jackson RE. Work capacity during 3-wk sojourn at 4,300 m: effects of relative polycythemia. J Appl Physiol Respir Environ Exerc Physiol. 1980;49(2):311–8.

    CAS  PubMed  Google Scholar 

  41. Maher JT, Jones LG, Hartley LH. Effects of high-altitude exposure on submaximal endurance capacity of men. J Appl Physiol. 1974;37(6):895–8.

    CAS  PubMed  Google Scholar 

  42. Burtscher M. Risk and protective factors for sudden cardiac death during leisure activities in the mountains: an update. Heart Lung Circ. 2017;26(8):757–62.

    PubMed  Google Scholar 

  43. Levine BD. Going high with heart disease: the effect of high altitude exposure in older individuals and patients with coronary artery disease. High Alt Med Biol. 2015;16(2):89–96.

    CAS  PubMed  Google Scholar 

  44. Levine BD, Zuckerman JH, deFilippi CR. Effect of high-altitude exposure in the elderly: the tenth mountain division study. Circulation. 1997;96(4):1224–32.

    CAS  PubMed  Google Scholar 

  45. Foster GE, Sheel AW. The human diving response, its function, and its control. Scand J Med Sci Sports. 2005;15(1):3–12.

    CAS  PubMed  Google Scholar 

  46. Arborelius M, Ballidin UI, Lilja B, Lundgren CE. Hemodynamic changes in man during immersion with the head above water. Aerosp Med. 1972;43(6):592–8.

    PubMed  Google Scholar 

  47. Pendergast DR, Lundgren CE. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol (1985). 2009;106(1):276–83.

    CAS  Google Scholar 

  48. Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol. 2018;315(1):R1–R27.

    CAS  PubMed  Google Scholar 

  49. Bove AA. The cardiovascular system and diving risk. Undersea Hyperb Med. 2011;38(4):261–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burtscher .

Editor information

Editors and Affiliations

Review

Review

1.1 Questions

  1. 1.

    Which are the most effective homeostatic responses of the human organism when exposed to cold and how are they related to the individual aerobic capacity (VO2max)?

  2. 2.

    How many days are needed for heat acclimatization and physiological changes associated with heat acclimatization?

  3. 3.

    How does acclimatization to high altitude affect maximal and submaximal aerobic exercise performance?

  4. 4.

    Which are the main factors limiting exercise capacity at depth?

1.2 Answers

  1. 1.

    Most effective homeostatic responses to cold exposure are cutaneous vasoconstriction and involuntary thermogenesis by shivering; the maximal heat production corresponds to the individual’s aerobic capacity (VO2max).

  2. 2.

    After 10–14 days heat acclimatization will be completed associated with increased skin blood flow and sweating capability contributing to cardiovascular stability and improved exercise performance.

  3. 3.

    Whereas maximal aerobic capacity (VO2max) is hardly affected by acclimatization to high altitude, submaximal exercise performance improves considerably.

  4. 4.

    Increased gas density and increased breathing resistance will restrict ventilation at depth.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burtscher, M., Tetzlaff, K. (2020). Sport in Extreme Environments: Cardiovascular Issues. In: Pressler, A., Niebauer, J. (eds) Textbook of Sports and Exercise Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-35374-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35374-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35373-5

  • Online ISBN: 978-3-030-35374-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics