Skip to main content

The Role of Imaging

  • Chapter
  • First Online:
Textbook of Sports and Exercise Cardiology

Abstract

In athletes of all age groups, the appropriate application of advanced imaging techniques is crucial to detect, graduate and potentially treat cardiovascular conditions that may pose an increased risk for continued sports participation. This primarily refers to the prevention of acute cardiac events such as sudden cardiac death, but also involves the identification of both negative and positive effects on the development and the clinical course of chronic cardiac disorders. This is of particular relevance in recreational/master athletes, since these individuals very often perform strenuous activities such as marathon or triathlon in a non-organized and non-supervised fashion. In addition, recreational/master athletes are usually at least middle-aged and have very often been exposed to elevated cardiovascular risk factor profiles over a longer period of time as compared to young competitive athletes. By means of echocardiography, for example, a common clinical scenario is to differentiate between increased left ventricular wall thickness induced by either long-term intensive exercise training or by hypertension. Coronary computed tomography contributes to advanced risk stratification and to the detection of coronary artery disease as the main cause of SCD in this cohort; this also holds true for exercise echocardiography, nuclear imaging and cardiac magnetic resonance imaging. The latter also identifies regions of myocardial fibrosis that may indicate an increased risk for arrhythmias, either by late gadolinium enhancement or by T1 mapping. Invasive coronary angiography, if indicated according to symptoms or suggestive findings during non-invasive procedures, either confirms or excludes relevant coronary stenosis and allows immediate interventional treatment. Advanced intracoronary artery imaging including intravascular ultrasound or assessment of fractional flow reserve can help to graduate the severity of stenoses and to understand epicardial and intramyocardial microvascular causes of symptoms. However, the need of radiation exposure and contrast agents as well as cost issues require careful risk-benefit assessment, especially in asymptomatic athletes with risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelliccia A, Caselli S, Sharma S, Basso C, Bax JJ, Corrado D, et al. European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete's heart. Eur Heart J. 2018;39(21):1949–69.

    Article  PubMed  Google Scholar 

  2. Chugh SS, Weiss JB. Sudden cardiac death in the older athlete. J Am Coll Cardiol. 2015;65(5):493–502.

    Article  PubMed  Google Scholar 

  3. Galderisi M, Cardim N, D'Andrea A, Bruder O, Cosyns B, Davin L, et al. The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(4):353–353r.

    Article  PubMed  Google Scholar 

  4. Limongelli G, Verrengia M, Pacileo G, Da Ponte A, Brancaccio P, Canonico R, et al. Left ventricular hypertrophy in Caucasian master athletes: differences with hypertension and hypertrophic cardiomyopathy. Int J Cardiol. 2006;111(1):113–9.

    Article  PubMed  Google Scholar 

  5. Galanti G, Toncelli L, Del Furia F, Stefani L, Cappelli B, De Luca A, et al. Tissue Doppler imaging can be useful to distinguish pathological from physiological left ventricular hypertrophy: a study in master athletes and mild hypertensive subjects. Cardiovasc Ultrasound. 2009;7:48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Galderisi M, Lomoriello VS, Santoro A, Esposito R, Olibet M, Raia R, et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2010;23(11):1190–8.

    Article  PubMed  Google Scholar 

  7. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The clinical use of stress echocardiography in non-Ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30(2):101–38.

    Article  PubMed  Google Scholar 

  8. Claessen G, La Gerche A, Voigt JU, Dymarkowski S, Schnell F, Petit T, et al. Accuracy of echocardiography to evaluate pulmonary vascular and RV function during exercise. JACC Cardiovasc Imaging. 2016;9(5):532–43.

    Article  PubMed  Google Scholar 

  9. Cho I, Chang HJ, Shin S, Sung JM, Lin FY, et al. Incremental prognostic utility of coronary CT angiography for asymptomatic patients based upon extent and severity of coronary artery calcium: results from the COronary CT angiography EvaluatioN for clinical outcomes InteRnational multicenter (CONFIRM) study. Eur Heart J. 2015;36(8):501–8.

    Article  PubMed  Google Scholar 

  10. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):e50–103.

    Article  PubMed  Google Scholar 

  11. Mohlenkamp S, Lehmann N, Moebus S, Schmermund A, Dragano N, Stang A, et al. Quantification of coronary atherosclerosis and inflammation to predict coronary events and all-cause mortality. J Am Coll Cardiol. 2011;57(13):1455–64.

    Article  PubMed  CAS  Google Scholar 

  12. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.

    Article  Google Scholar 

  13. La Gerche A, Baggish AL, Knuuti J, Prior DL, Sharma S, Heidbuchel H, et al. Cardiac imaging and stress testing asymptomatic athletes to identify those at risk of sudden cardiac death. JACC Cardiovasc Imaging. 2013;6(9):993–1007.

    Article  PubMed  Google Scholar 

  14. Maron BJ, Zipes DP, Kovacs RJ, American Heart Association E, Arrhythmias Committee of Council on Clinical Cardiology CoCDiYCoC, Stroke Nursing CoFG, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e256–61.

    PubMed  Google Scholar 

  15. Mohlenkamp S. Coronary computed tomography. In: Pelliccia A, Heidbuchel H, Corrado D, Börjesson M, Sharma S, editors. The ESC textbook of sports cardiology. Oxford: Oxford University Press; 2019. p. 153–9.

    Google Scholar 

  16. Achenbach S, Barkhausen J, Beer M, Beerbaum P, Dill T, Eichhorn J, et al. Consensus recommendations of the German radiology society (DRG), the German cardiac society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Rofo. 2012;184(4):345–68.

    Article  CAS  PubMed  Google Scholar 

  17. Attili A, Hensley AK, Jones FD, Grabham J, DiSessa TG. Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography. 2013;30(2):225–33.

    Article  PubMed  Google Scholar 

  18. Van Hare GF, Ackerman MJ, Evangelista JK, Kovacs RJ, Myerburg RJ, Shafer KM, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 4: congenital heart disease: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2372–84.

    Article  PubMed  Google Scholar 

  19. Lauer MS. Elements of danger—the case of medical imaging. N Engl J Med. 2009;361(9):841–3.

    Article  CAS  PubMed  Google Scholar 

  20. Plicht B, Erbel R, Mohlenkamp S. Is there a preventive value in non-invasive cardiac imaging? Debate on the case of a marathon runner. Dtsch Med Wochenschr. 2009;134(40):e1–5.

    Article  CAS  PubMed  Google Scholar 

  21. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  22. Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406.

    Article  PubMed  Google Scholar 

  23. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O'Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohlenkamp S, Lehmann N, Breuckmann F, Brocker-Preuss M, Nassenstein K, Halle M, et al. Running: the risk of coronary events : prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29(15):1903–10.

    Article  PubMed  Google Scholar 

  25. Thompson PD, Balady GJ, Chaitman BR, Clark LT, Levine BD, Myerburg RJ. Task Force 6: coronary artery disease. J Am Coll Cardiol. 2005;45(8):1348–53.

    Article  PubMed  Google Scholar 

  26. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):3168–209.

    Article  PubMed  Google Scholar 

  27. Mohlenkamp S, Leineweber K, Lehmann N, Braun S, Roggenbuck U, Perrey M, et al. Coronary atherosclerosis burden, but not transient troponin elevation, predicts long-term outcome in recreational marathon runners. Basic Res Cardiol. 2014;109(1):391.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz RS, Kraus SM, Schwartz JG, Wickstrom KK, Peichel G, Garberich RF, et al. Increased coronary artery plaque volume among male Marathon runners. Mo Med. 2014;111(2):89–94.

    PubMed  PubMed Central  Google Scholar 

  29. Tsiflikas I, Thomas C, Fallmann C, Schabel C, Mangold S, Ketelsen D, et al. Prevalence of subclinical coronary artery disease in middle-aged, male Marathon runners detected by cardiac CT. Rofo. 2015;187(7):561–8.

    Article  CAS  PubMed  Google Scholar 

  30. Karlstedt E, Chelvanathan A, Da Silva M, Cleverley K, Kumar K, Bhullar N, et al. The impact of repeated marathon running on cardiovascular function in the aging population. J Cardiovasc Magn Reson. 2012;14:58.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ermolao A, Roman F, Gasperetti A, Varnier M, Bergamin M, Zaccaria M. Coronary CT angiography in asymptomatic middle-aged athletes with ST segment anomalies during maximal exercise test. Scand J Med Sci Sports. 2016;26(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  32. Hecht HS, Achenbach S, Kondo T, Narula J. High-risk plaque features on coronary CT angiography. JACC Cardiovasc Imaging. 2015;8(11):1336–9.

    Article  PubMed  Google Scholar 

  33. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging. 2013;6(4):448–57.

    Article  PubMed  Google Scholar 

  34. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36(47):3359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahabadi AA, Achenbach S, Burgstahler C, Dill T, Fischbach R, Knez A, et al. Safety, efficacy, and indications of beta-adrenergic receptor blockade to reduce heart rate prior to coronary CT angiography. Radiology. 2010;257(3):614–23.

    Article  PubMed  Google Scholar 

  36. Meinel FG, Nance JW Jr, Harris BS, De Cecco CN, Costello P, Schoepf UJ. Radiation risks from cardiovascular imaging tests. Circulation. 2014;130(5):442–5.

    Article  PubMed  Google Scholar 

  37. Galper BZ, Wang YC, Einstein AJ. Strategies for primary prevention of coronary heart disease based on risk stratification by the ACC/AHA lipid guidelines, ATP III guidelines, coronary calcium scoring, and C-reactive protein, and a global treat-all strategy: a comparative—effectiveness modeling study. PLoS One. 2015;10(9):e0138092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pletcher MJ, Pignone M, Earnshaw S, McDade C, Phillips KA, Auer R, et al. Using the coronary artery calcium score to guide statin therapy: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2014;7(2):276–84.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roberts ET, Horne A, Martin SS, Blaha MJ, Blankstein R, Budoff MJ, et al. Cost-effectiveness of coronary artery calcium testing for coronary heart and cardiovascular disease risk prediction to guide statin allocation: the multi-ethnic study of atherosclerosis (MESA). PLoS One. 2015;10(3):e0116377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Maddahi J, Kiat H, Van Train KF, Prigent F, Friedman J, Garcia EV, et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease. Am J Cardiol. 1990;66(13):55E–62E.

    Article  CAS  PubMed  Google Scholar 

  41. Mohlenkamp S. Nuclear imaging. In: Pelliccia A, Heidbuchel H, Corrado D, Börjesson M, Sharma S, editors. The ESC textbook of sports cardiology. Oxford: Oxford University Press; 2019. p. 159–62.

    Google Scholar 

  42. Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1995;26(3):639–47.

    Article  CAS  PubMed  Google Scholar 

  43. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93(5):905–14.

    Article  CAS  PubMed  Google Scholar 

  44. Chatziioannou SN, Moore WH, Ford PV, Fisher RE, Lee VV, Alfaro-Franco C, et al. Prognostic value of myocardial perfusion imaging in patients with high exercise tolerance. Circulation. 1999;99(7):867–72.

    Article  CAS  PubMed  Google Scholar 

  45. Bartram P, Toft J, Hanel B, Ali S, Gustafsson F, Mortensen J, et al. False-positive defects in technetium-99m sestamibi myocardial single-photon emission tomography in healthy athletes with left ventricular hypertrophy. Eur J Nucl Med. 1998;25(9):1308–12.

    Article  CAS  PubMed  Google Scholar 

  46. Bouvier F, Nejat M, Berglund B, Brodin LA, Jorfeldt L, Juhlin-Dannfelt A, et al. High incidence of scintigraphic myocardial uptake defects at rest and during exercise in male elite runners. Heart. 1997;77(3):252–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andersson LG, Henriksen E, Damm S, Jonason T, Niklasson U, Wesslen L, et al. Thallium-201 myocardial imaging at rest in male orienteers and other endurance athletes. Ups J Med Sci. 2001;106(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  48. Siegel AJ, Lewandrowski KB, Strauss HW, Fischman AJ, Yasuda T. Normal post-race antimyosin myocardial scintigraphy in asymptomatic marathon runners with elevated serum creatine kinase MB isoenzyme and troponin T levels. Evidence against silent myocardial cell necrosis. Cardiology. 1995;86(6):451–6.

    Article  CAS  PubMed  Google Scholar 

  49. Siegel AJ, Silverman LM, Holman BL. Normal results of post-race thallium-201 myocardial perfusion imaging in marathon runners with elevated serum MB creatine kinase levels. Am J Med. 1985;79(4):431–4.

    Article  CAS  PubMed  Google Scholar 

  50. van de Sande DA, Hoogsteen J, Liem IH, Kemps HM. Athlete’s syndrome X. Int J Cardiol. 2014;177(2):e49–50.

    Article  PubMed  Google Scholar 

  51. Prakken NH, Teske AJ, Cramer MJ, Mosterd A, Bosker AC, Mali WP, et al. Head-to-head comparison between echocardiography and cardiac MRI in the evaluation of the athlete’s heart. Br J Sports Med. 2012;46(5):348–54.

    Article  PubMed  Google Scholar 

  52. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol. 2000;36(6):1985–91.

    Article  CAS  PubMed  Google Scholar 

  53. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  CAS  PubMed  Google Scholar 

  54. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43(12):2260–4.

    Article  PubMed  Google Scholar 

  55. Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C, et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY Study. J Am Coll Cardiol. 2017;70(16):1977–87.

    Article  PubMed  Google Scholar 

  56. van de Schoor FR, Aengevaeren VL, Hopman MT, Oxborough DL, George KP, Thompson PD, et al. Myocardial fibrosis in athletes. Mayo Clin Proc. 2016;91(11):1617–31.

    Article  PubMed  Google Scholar 

  57. La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33(8):998–1006.

    Article  PubMed  CAS  Google Scholar 

  58. Breuckmann F, Mohlenkamp S, Nassenstein K, Lehmann N, Ladd S, Schmermund A, et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology. 2009;251(1):50–7.

    Article  PubMed  Google Scholar 

  59. Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yilmaz A, Sechtem U. Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles. Heart. 2014;100(8):662–71.

    Article  PubMed  Google Scholar 

  61. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of the European Society of cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tahir E, Starekova J, Muellerleile K, von Stritzky A, Munch J, Avanesov M, et al. Myocardial fibrosis in competitive triathletes detected by contrast-enhanced CMR correlates with exercise-induced hypertension and competition history. JACC Cardiovasc Imaging. 2018;11(9):1260–70.

    Article  PubMed  Google Scholar 

  63. Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation quality strategic directions committee appropriateness criteria working group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, north American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  64. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25(21):1940–65.

    Article  PubMed  Google Scholar 

  65. Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, et al. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. Korean J Radiol. 2014;15(6):659–88.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Albano AJ, Thompson PD, Kapur NK. Acute coronary thrombosis in Boston marathon runners. N Engl J Med. 2012;366(2):184–5.

    Article  CAS  PubMed  Google Scholar 

  67. Ciampricotti R, el Gamal MI, Bonnier JJ, Relik TH. Myocardial infarction and sudden death after sport: acute coronary angiographic findings. Catheter Cardiovasc Diagn. 1989;17(4):193–7.

    Article  CAS  Google Scholar 

  68. Ciampricotti R, El-Gamal M, Relik T, Taverne R, Panis J, de Swart J, et al. Clinical characteristics and coronary angiographic findings of patients with unstable angina, acute myocardial infarction, and survivors of sudden ischemic death occurring during and after sport. Am Heart J. 1990;120(6 Pt 1):1267–78.

    Article  CAS  PubMed  Google Scholar 

  69. Cuneo A, Oeckinghaus R, Tebbe U. Leisure sport activity as a trigger for acute coronary events in men without known coronary artery disease : a single-center case study. Herz. 2011;36(7):637–42.

    Article  CAS  PubMed  Google Scholar 

  70. Halna du Fretay X, Akoudad H, Nejjari M, Benamer H. Myocardial infarction related to sport. Acute clinical and coronary angiographic characteristics in 16 cases. Ann Cardiol Angeiol (Paris). 2013;62(6):398–403.

    Article  CAS  Google Scholar 

  71. Indermuehle A, Cook S, Marty H. A young mountaineer surviving sudden cardiac arrest at high altitude. BMJ Case Rep. 2010;2010:pii: bcr0720092130.

    Article  Google Scholar 

  72. Mohlenkamp S. Coronary angiography. In: Pelliccia A, Heidbuchel H, Corrado D, Börjesson M, Sharma S, editors. The ESC textbook of sports cardiology. Oxford: Oxford University Press; 2019. p. 162–5.

    Google Scholar 

  73. Bartsch P. Platelet activation with exercise and risk of cardiac events. Lancet. 1999;354(9192):1747–8.

    Article  CAS  PubMed  Google Scholar 

  74. Siegel AJ, Stec JJ, Lipinska I, Van Cott EM, Lewandrowski KB, Ridker PM, et al. Effect of marathon running on inflammatory and hemostatic markers. Am J Cardiol. 2001;88(8):918–20.

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki K, Nakaji S, Yamada M, Liu Q, Kurakake S, Okamura N, et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc. 2003;35(2):348–55.

    Article  CAS  PubMed  Google Scholar 

  76. Kalaga RV, Malik A, Thompson PD. Exercise-related spontaneous coronary artery dissection: case report and literature review. Med Sci Sports Exerc. 2007;39(8):1218–20.

    Article  PubMed  Google Scholar 

  77. Van Mieghem NM, van Weenen S, Nollen G, Ligthart J, Regar E, van Geuns RJ. Traumatic coronary artery dissection: potential cause of sudden death in soccer. Circulation. 2013;127(3):e280–2.

    PubMed  Google Scholar 

  78. Kranjec I, Cerne A, Noc M. Ephedrine-induced acute myocardial infarction in a young athlete: a case of thrombus management. Angiology. 2009;60(2):254–8.

    Article  PubMed  Google Scholar 

  79. Peovska I, Maksimovic J, Kalpak O, Pejkov H, Bosevski M. Recurrent myocardial infarction in a young football player with antithrombin III deficiency. Cardiol J. 2008;15(5):463–6.

    PubMed  Google Scholar 

  80. Park SH, Kim SE, Ryu SK. Left main coronary artery aneurysm with chronic total occlusion of both left coronary arteries in a young athlete. Heart. 2001;85(1):1e, 11.

    Article  Google Scholar 

  81. Dhoble A, Abdelmoneim SS, Bernier M, Oh JK, Mulvagh SL. Transient left ventricular apical ballooning and exercise induced hypertension during treadmill exercise testing: is there a common hypersympathetic mechanism? Cardiovasc Ultrasound. 2008;6:37.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Digne F, Paillole C, Pilliere R, Elayi SC, Gerardin B, Dib JC, et al. Tako-Tsubo syndrome after an exercise echocardiography. Int J Cardiol. 2008;127(3):420–2.

    Article  CAS  PubMed  Google Scholar 

  83. Dorfman T, Aqel R, Allred J, Woodham R, Iskandrian AE. Takotsubo cardiomyopathy induced by treadmill exercise testing: an insight into the pathophysiology of transient left ventricular apical (or midventricular) ballooning in the absence of obstructive coronary artery disease. J Am Coll Cardiol. 2007;49(11):1223–5.

    Article  PubMed  Google Scholar 

  84. Vasconcelos Filho FJ, Gomes CA, Queiroz OA, Barreto JE. Dobutamine stress echocardiography-induced broken heart syndrome (Takotsubo syndrome). Arq Bras Cardiol. 2009;93(1):e5–7.

    Article  PubMed  Google Scholar 

  85. Vertesaljai M, Szoke S, Szonyi T, Piroth Z, Fontos G, Szuts K, et al. Transient left ventricular apical akinesis with systolic dysfunction after physical exercise: a form of tako-tsubo syndrome. Orv Hetil. 2008;149(15):687–90.

    Article  PubMed  Google Scholar 

  86. Chenaitia H, Coullange M, Benhamou L, Gerbeaux P. Takotsubo cardiomyopathy associated with diving. Eur J Emerg Med. 2010;17(2):103–6.

    Article  PubMed  Google Scholar 

  87. De Gennaro L, Brunetti ND, Ruggiero M, Rutigliano D, Campanella C, Santoro F, et al. Adrift: Takotsubo cardiomyopathy in an old woman in distress while taking a swim off coast. Int J Cardiol. 2014;177(3):e161–2.

    Article  PubMed  Google Scholar 

  88. Madias JE. Adrift while swimming and Takotsubo syndrome: the vagotonia connection. Int J Cardiol. 2014;177(1):123.

    Article  PubMed  Google Scholar 

  89. Placci A, Sella G, Bellanti G, Margheri M. Anabolic androgenic steroid-induced Takotsubo cardiomyopathy. BMJ Case Rep. 2015;2015:pii: bcr2014209089.

    Article  Google Scholar 

  90. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35(6):1493–501.

    Article  CAS  PubMed  Google Scholar 

  91. Joggerst S, Monge J, Uribe C, Sherron S, Angelini P. Sudden cardiac arrest at the finish line: in coronary ectopia, the cause of ischemia is from intramural course, not ostial location. Tex Heart Inst J. 2014;41(2):212–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349(11):1064–75.

    Article  CAS  PubMed  Google Scholar 

  93. Vogt S, Koenig D, Prettin S, Pottgiesser T, Allgeier J, Dickhuth HH, et al. Unusual cause of exercise-induced ventricular fibrillation in a well-trained adult endurance athlete: a case report. J Med Case Rep. 2008;2:120.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mohlenkamp S, Hort W, Ge J, Erbel R. Update on myocardial bridging. Circulation. 2002;106(20):2616–22.

    Article  PubMed  Google Scholar 

  95. Erbel R, Ge J, Mohlenkamp S. Myocardial bridging: a congenital variant as an anatomic risk factor for myocardial infarction? Circulation. 2009;120(5):357–9.

    Article  PubMed  Google Scholar 

  96. Kurt IH. A case of muscular bridge resulting in myocardial infraction following heavy effort: a case report. Cases J. 2009;2(1):135.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gowd BM, Thompson PD. Isolated myocardial bridging and exercise-related cardiac events. Int J Sports Med. 2014;35(14):1145–50.

    Article  CAS  PubMed  Google Scholar 

  98. Kojda G, Hambrecht R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res. 2005;67(2):187–97.

    Article  CAS  PubMed  Google Scholar 

  99. Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J. 2013;34(24):1790–9.

    Article  CAS  PubMed  Google Scholar 

  100. Windecker S, Allemann Y, Billinger M, Pohl T, Hutter D, Orsucci T, et al. Effect of endurance training on coronary artery size and function in healthy men: an invasive followup study. Am J Physiol Heart Circ Physiol. 2002;282(6):H2216–23.

    Article  CAS  PubMed  Google Scholar 

  101. Mohlenkamp S, Bose D, Mahabadi AA, Heusch G, Erbel R. On the paradox of exercise: coronary atherosclerosis in an apparently healthy marathon runner. Nat Clin Pract Cardiovasc Med. 2007;4(7):396–401.

    Article  PubMed  Google Scholar 

  102. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  103. Wieneke H, Haude M, Ge J, Altmann C, Kaiser S, Baumgart D, et al. Corrected coronary flow velocity reserve: a new concept for assessing coronary perfusion. J Am Coll Cardiol. 2000;35(7):1713–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Möhlenkamp .

Editor information

Editors and Affiliations

Review

Review

1.1 Questions

A 55-year-old male runner presents in your department for a health exam in order to get written medical clearance required for participation in his next marathon. He had finished 2–3 marathons per year over the past 14 years, after having decided to change his previously unhealthy lifestyle at the age of 40. Until then he was smoking approximately 5–10 cigarettes/day. His father had myocardial infarction at the age of 58. Occasional blood pressure (BP) measurements at his general practitioner had partly revealed borderline systolic values between 130 and 145 mmHg, but when using his wife’s device at home values had always been “normal”. Thus, no medication had been recommended so far. Physical examination was normal, BP was 147/86 mmHg, and resting ECG showed an isolated increased QRS voltage. His LDL-cholesterol was 167 mg/dl (4.3 mmol/l). You decide to perform exercise testing, showing a maximal blood pressure of 230/90 mmHg and a normal ECG. You also decide to perform an echocardiogram, revealing left ventricular size at the upper limit of normal and mild hypertrophy (12 mm).

  1. 1.

    How do you interpret these findings?

  2. 2.

    How could you add additional information regarding the etiology of left ventricular hypertrophy?

  3. 3.

    How would you estimate this runner’s overall cardiovascular risk?

  4. 4.

    Does this patient need additional examinations based on advanced imaging techniques?

In case you have decided to perform CAC, imagine this runner would have a score of 123.

  1. 5.

    Would you treat this patient with statins?

  2. 6.

    Would you advise against continued marathon running?

  3. 7.

    Would you perform additional imaging testing, and if yes, which technique would you use?

  4. 8.

    Would you act different if calcium score was 567?

1.2 Answers

  1. 1.

    The runner was a former smoker but had quit 15 years ago. On the other hand, he has a positive family history of coronary artery disease, and the previous BP measurements were at least borderline, which is regarded high-normal in Europe but already stage I hypertension in the US. The ECG does not further add to these considerations, since isolated increased QRS voltage does at least in young athletes not require additional testing; nonetheless, it could be a sign of BP-induced hypertrophy. Both exercise testing and echocardiography support the suspicion of clinically relevant hypertension.

  2. 2.

    This athlete has a history of longstanding endurance exercise, which may be a sufficient explanation for mild hypertrophy. The assessment of left ventricular diastolic function using tissue Doppler, as well as measuring global longitudinal strain could add to the differentiation between athlete’s heart and hypertensive heart disease (although the latter is still not fully excluded in case of normal values).

  3. 3.

    Given the elevated LDL level, the calculated 10-year-risk using the ASCVD score is 8.2%, and thus relevantly elevated.

  4. 4.

    Apart from ambulatory BP monitoring, which is clearly recommended in this case, additional imaging modalities beyond echocardiography are not absolutely indicated. Nonetheless, according to the latest AHA guidelines on the management of blood cholesterol [26], assessment of CAC maybe considered in this situation and should be discussed with the patient.

  5. 5.

    Studies have suggested a CAC cut-off value of >100 to at least raise increased risk awareness, and a benefit of statin treatment has basically been shown for these patients. Given the positive family history of myocardial infarction, a statin should be recommended to the patient.

  6. 6.

    No, there is generally no contraindication to continued running with respect to these findings, providing the BP situation has been clarified and eventually treated.

  7. 7.

    You could think about performing exercise echocardiography due to its higher sensitivity and specificity in confirming or ruling out ischemia as compared to common exercise testing.

  8. 8.

    The athlete is asymptomatic, and thus there is still no clear indication to further expand the diagnostic work-up, since CAC does not allow any conclusion on the presence of severe coronary stenosis. Nonetheless, this score indicates a high likelihood of a cardiovascular event within the following 2–5 years, and it would be prudent to perform exercise echocardiography, nuclear imaging or perhaps even CCTA if local expertise is available.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pressler, A., Möhlenkamp, S. (2020). The Role of Imaging. In: Pressler, A., Niebauer, J. (eds) Textbook of Sports and Exercise Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-35374-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35374-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35373-5

  • Online ISBN: 978-3-030-35374-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics