Skip to main content

Specific Populations: Paediatric and Adolescent Athletes

  • Chapter
  • First Online:
Textbook of Sports and Exercise Cardiology

Abstract

The success of systematic early age talent development has led to the professionalisation of youth sports academies used by clubs and governing bodies alike, and sports physicians are nowadays commonly confronted with paediatric cardiological problems. This has led to calls from the International Olympic Committee, amongst others, for more diligence to safeguard the psycho-physiological development of the paediatric athlete. Medical cardiac care of the paediatric athlete however is in its infancy and international guidelines, present for many common adult sports cardiology scenarios, are not available yet. The aim of this chapter is to provide a practical approach to the cardiac care of the paediatric athlete to facilitate healthy and above all, safe talent development, but also provide guidance on how to distinguish adaptive, beneficial cardiovascular remodelling from underlying pathology of congenital or inherited cardiovascular disease, including cardiomyopathies and arrhythmias. Differences in presentation, diagnosis and treatment between childhood and adult athletes are highlighted and can educate the reader in the emerging field of paediatric sports cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieles GE, Horn R, Williams CA, Stuart AG. Paediatric exercise training in prevention and treatment. Arch Dis Child. 2014;99(4):380–5.

    Article  PubMed  Google Scholar 

  2. Townsend MW, Williams, J.; Bhatnagar, P.; Rayner M, Physical activity statistics 2015. 2015. London: British Heart Foundation.

    Google Scholar 

  3. Brenner JS, American Academy of Pediatrics Council on Sports M, Fitness. Overuse injuries, overtraining, and burnout in child and adolescent athletes. Pediatrics. 2007;119(6):1242–5.

    Article  PubMed  Google Scholar 

  4. Gustafsson H, Hill AP, Stenling A, Wagnsson S. Profiles of perfectionism, parental climate, and burnout among competitive junior athletes. Scand J Med Sci Sports. 2016;26(10):1256–64.

    Article  CAS  PubMed  Google Scholar 

  5. Atkins DL, Everson-Stewart S, Sears GK, Daya M, Osmond MH, Warden CR, et al. Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest. Circulation. 2009;119(11):1484–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drezner JA, Rao AL, Heistand J, Bloomingdale MK, Harmon KG. Effectiveness of emergency response planning for sudden cardiac arrest in United States high schools with automated external defibrillators. Circulation. 2009;120(6):518–25.

    Article  PubMed  Google Scholar 

  7. Sharma S. Point/mandatory ECG screening of young competitive athletes. Heart Rhythm. 2012;9(11):1896.

    Article  PubMed  Google Scholar 

  8. Berger S, Kugler JD, Thomas JA, Friedberg DZ. Sudden cardiac death in children and adolescents: introduction and overview. Pediatr Clin N Am. 2004;51(5):1201–9.

    Article  Google Scholar 

  9. Maron BJ, Epstein SE, Roberts WC. Causes of sudden death in competitive athletes. J Am Coll Cardiol. 1986;7(1):204–14.

    Article  CAS  PubMed  Google Scholar 

  10. Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA. 1996;276(3):199–204.

    Article  CAS  PubMed  Google Scholar 

  11. Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30(6):1512–20.

    Article  CAS  PubMed  Google Scholar 

  12. Maron BJ, Haas TS, Doerer JJ, Thompson PD, Hodges JS. Comparison of U.S. and Italian experiences with sudden cardiac deaths in young competitive athletes and implications for preparticipation screening strategies. Am J Cardiol. 2009;104(2):276–80.

    Article  PubMed  Google Scholar 

  13. Harmon KG, Zigman M, Drezner JA. The effectiveness of screening history, physical exam, and ECG to detect potentially lethal cardiac disorders in athletes: a systematic review/meta-analysis. J Electrocardiol. 2015;48(3):329–38.

    Article  PubMed  Google Scholar 

  14. Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006;296(13):1593–601.

    Article  CAS  PubMed  Google Scholar 

  15. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085–92.

    Article  PubMed  Google Scholar 

  16. Finocchiaro G, et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. Front Physiol. 2016;67(18):2108–15.

    Google Scholar 

  17. Harmon KG, et al. Incidence, cause, and comparative frequency of sudden cardiac death in National Collegiate Athletic Association Athletes: a decade in review. Circulation1. 2015;32(1):10–19.

    Google Scholar 

  18. Araujo CG, Scharhag J. Athlete: a working definition for medical and health sciences research. Scand J Med Sci Sports. 2016;26(1):4–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hauser M, Petzuch K, Kuhn A, Schon P, Elmenhorst J, Schonfelder M, et al. The Munich Triathlon Heart Study: ventricular function, myocardial velocities, and two-dimensional strain in healthy children before and after endurance stress. Pediatr Cardiol. 2013;34(3):576–82.

    Article  PubMed  Google Scholar 

  20. McClean G, Riding NR, Ardern CL, Farooq A, Pieles GE, Watt V, et al. Electrical and structural adaptations of the paediatric athlete’s heart: a systematic review with meta-analysis. Br J Sports Med. 2018;52(4):230.

    Article  PubMed  Google Scholar 

  21. Sharma S, Maron BJ, Whyte G, Firoozi S, Elliott PM, McKenna WJ. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40(8):1431–6.

    Article  PubMed  Google Scholar 

  22. Fritsch P, Ehringer-Schetitska D, Dalla Pozza R, Jokinen E, Herceg-Cavrak V, Hidvegi E, et al. Cardiovascular pre-participation screening in young athletes: recommendations of the Association of European Paediatric Cardiology. Cardiol Young. 2017;27(9):1655–60.

    Article  PubMed  Google Scholar 

  23. Dick NA, Diehl JJ. Febrile illness in the athlete. Sports Health. 2014;6(3):225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scharhag J, Meyer T. Return to play after acute infectious disease in football players. J Sports Sci. 2014;32(13):1237–42.

    Article  PubMed  Google Scholar 

  25. Joy E, Kussman A, Nattiv A. 2016 update on eating disorders in athletes: a comprehensive narrative review with a focus on clinical assessment and management. Br J Sports Med. 2016;50(3):154–62.

    Article  PubMed  Google Scholar 

  26. Enriquez A, Frankel DS. Arrhythmogenic effects of energy drinks. J Cardiovasc Electrophysiol. 2017;28(6):711–7.

    Article  PubMed  Google Scholar 

  27. Solimini R, Rotolo MC, Mastrobattista L, Mortali C, Minutillo A, Pichini S, et al. Hepatotoxicity associated with illicit use of anabolic androgenic steroids in doping. Eur Rev Med Pharmacol Sci. 2017;21(1 Suppl):7–16.

    CAS  PubMed  Google Scholar 

  28. Saladini F, Palatini P. Isolated systolic hypertension in young individuals: pathophysiological mechanisms, prognostic significance, and clinical implications. High Blood Press Cardiovasc Prev. 2017;24(2):133–9.

    Article  PubMed  Google Scholar 

  29. Park MK, Guntheroth WG. How to read pediatric ECG’s. Philadelphia, PA: Mosby; 2006.

    Google Scholar 

  30. Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International criteria for electrocardiographic interpretation in athletes: consensus statement. Br J Sports Med. 2017;51(9):704–31.

    Article  PubMed  Google Scholar 

  31. McClean G, Riding NR, Pieles G, Watt V, Adamuz C, Sharma S, et al. Diagnostic accuracy and Bayesian analysis of new international ECG recommendations in paediatric athletes. Heart. 2019;105(2):152–9.

    Article  PubMed  Google Scholar 

  32. Lopez L, Colan S, Stylianou M, Granger S, Trachtenberg F, Frommelt P, et al. Relationship of echocardiographic Z scores adjusted for body surface area to age, sex, race, and ethnicity: the Pediatric Heart Network Normal Echocardiogram Database. Circ Cardiovasc Imaging. 2017;10(11):e006979.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rowland TW, American College of Sports Medicine, North American Society of Pediatric Exercise Medicine. Cardiopulmonary exercise testing in children and adolescents. Champaign, IL: Human Kinetics; 2018. p. xi, 275p.

    Google Scholar 

  34. Ahluwalia N, Raju H. Assessment of the QT interval in athletes: red flags and pitfalls. Curr Treat Options Cardiovasc Med. 2018;20(10):82.

    Article  PubMed  Google Scholar 

  35. Ergul Y, Ozturk E, Ozyilmaz I, Unsal S, Carus H, Tola HT, et al. Utility of exercise testing and adenosine response for risk assessment in children with Wolff-Parkinson-White syndrome. Congenit Heart Dis. 2015;10(6):542–51.

    Article  PubMed  Google Scholar 

  36. Wackel P, Irving C, Webber S, Beerman L, Arora G. Risk stratification in Wolff-Parkinson-White syndrome: the correlation between noninvasive and invasive testing in pediatric patients. Pacing Clin Electrophysiol. 2012;35(12):1451–7.

    Article  PubMed  Google Scholar 

  37. Horner JM, Ackerman MJ. Ventricular ectopy during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2008;5(12):1690–4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wasserman K. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. p. xiii, 572p.

    Google Scholar 

  39. Amăricăi E, Suciu O, Onofrei RR, Miclăuș RS, Cațan L, Cerbu S, et al. Assessment of children with pectus excavatum without surgical correction. Wien Klin Wochenschr. 2019;131(5-6):126–31.

    Article  PubMed  Google Scholar 

  40. Moldover JR, Downey JA. Cardiac response to exercise: comparison of 3 ergometers. Arch Phys Med Rehabil. 1983;64(4):155–9.

    CAS  PubMed  Google Scholar 

  41. Gibson PB, Szimonisz SM, Rowland TW. Rowing ergometry for assessment of aerobic fitness in children. Int J Sports Med. 2000;21(8):579–82.

    Article  CAS  PubMed  Google Scholar 

  42. Rowland TW. Aerobic exercise testing protocols. In: Rowland TW, editor. Pediatric laboratory exercise testing clinical guidelines. Champaign, IL: Human Kinetics; 1992. p. 195.

    Google Scholar 

  43. Heyman E, Briard D, Dekerdanet M, Gratas-Delamarche A, Delamarche P. Accuracy of physical working capacity 170 to estimate aerobic fitness in prepubertal diabetic boys and in 2 insulin dose conditions. J Sports Med Phys Fitness. 2006;46(2):315–21.

    CAS  PubMed  Google Scholar 

  44. Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996;28(6):1567–72.

    Article  CAS  PubMed  Google Scholar 

  45. Akkerman M, van Brussel M, Hulzebos E, Vanhees L, Helders PJ, Takken T. The oxygen uptake efficiency slope: what do we know? J Cardiopulm Rehabil Prev. 2010;30(6):357–73.

    Article  PubMed  Google Scholar 

  46. Akkerman M, van Brussel M, Bongers BC, Hulzebos EH, Helders PJ, Takken T. Oxygen uptake efficiency slope in healthy children. Pediatr Exerc Sci. 2010;22(3):431–41.

    Article  PubMed  Google Scholar 

  47. Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14:844–52.

    Article  CAS  PubMed  Google Scholar 

  48. Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236–43.

    Article  CAS  PubMed  Google Scholar 

  49. Buchheit M, Solano R, Millet GP. Heart-rate deflection point and the second heart-rate variability threshold during running exercise in trained boys. Pediatr Exerc Sci. 2007;19:192–204.

    Article  PubMed  Google Scholar 

  50. Gaskill SE, Ruby BC, Walker AJ, Sanchez OA, Serfass RC, Leon AS. Validity and reliability of combining three methods to determine ventilatory threshold. Med Sci Sports Exerc. 2001;33(11):1841–8.

    Article  CAS  PubMed  Google Scholar 

  51. Mucci PB, Baquet G, Nourry C, Deruelle F, Berthoin S, Fabre C. Exercise testing in children: comparison in ventilatory thresholds changes with interval-training. Pediatr Pulmonol. 2012;48(8):809–16.

    Article  PubMed  Google Scholar 

  52. Hebestreit H, Staschen B, Hebestreit A. Ventilatory threshold: a useful method to determine aerobic fitness in children? Med Sci Sports Exerc. 2000;32(11):1964–9.

    Article  CAS  PubMed  Google Scholar 

  53. Washington RL, van Gundy JC, Cohen C, Sondheimer HM, Wolfe RR. Normal aerobic and anaerobic exercise data for North American school-age children. J Pediatr. 1988;112(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  54. Harrell JS, McMurray RG, Baggett CD, Pennell ML, Pearce PF, Bangdiwala SI. Energy costs of physical activities in children and adolescents. Med Sci Sports Exerc. 2005;37(2):329–36.

    Article  PubMed  Google Scholar 

  55. Gulmans VA, de Meer K, Binkhorst RA, Helders PJ, Saris WH. Reference values for maximum work capacity in relation to body composition in healthy Dutch children. Eur Respir J. 1997;10(1):94–7.

    CAS  PubMed  Google Scholar 

  56. Giardini A, Odendaal D, Khambadkone S, Derrick G. Physiologic decrease of ventilatory response to exercise in the second decade of life in healthy children. Am Heart J. 2011;161(6):1214–9.

    Article  PubMed  Google Scholar 

  57. Breithaupt PG, Colley RC, Adamo KB. Using the oxygen uptake efficiency slope as an indicator of cardiorespiratory fitness in the obese pediatric population. Pediatr Exerc Sci. 2012;24(3):357–68.

    Article  PubMed  Google Scholar 

  58. Rausch CM, Taylor AL, Ross H, Sillau S, Ivy DD. Ventilatory efficiency slope correlates with functional capacity, outcomes, and disease severity in pediatric patients with pulmonary hypertension. Int J Cardiol. 2013;169(6):445–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Santuz P, Baraldi E, Filippone M, Zacchello F. Exercise performance in children with asthma: is it different from that of healthy controls? Eur Respir J. 1997;10(6):1254–60.

    Article  CAS  PubMed  Google Scholar 

  60. Pieles GE, Gowing L, Forsey J, Ramanujam P, Miller F, Stuart AG, et al. The relationship between biventricular myocardial performance and metabolic parameters during incremental exercise and recovery in healthy adolescents. Am J Physiol Heart Circ Physiol. 2015;309(12):H2067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cifra B, Mertens L, Mirkhani M, Slorach C, Hui W, Manlhiot C, et al. Systolic and diastolic myocardial response to exercise in a healthy pediatric cohort. J Am Soc Echocardiogr. 2016;29(7):648–54.

    Article  PubMed  Google Scholar 

  62. La Gerche A, Claessen G, Van De Bruaene A, Pattyn N, Van Cleemput J, Gewillig M, et al. Cardiac magnetic resonance imaging: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging. 2013;6(2):329–38.

    Article  PubMed  Google Scholar 

  63. Biko DM, Collins RT 2nd, Partington SL, Harris M, Whitehead KK, Keller MS, et al. Magnetic resonance myocardial perfusion imaging: safety and indications in pediatrics and young adults. Pediatr Cardiol. 2018;39(2):275–82.

    Article  PubMed  Google Scholar 

  64. Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, et al. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging. 2010;3(1):65–76.

    Article  PubMed  Google Scholar 

  65. Dallaire F, Slorach C, Hui W, Sarkola T, Friedberg MK, Bradley TJ, et al. Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging. 2015;8(2):e002167.

    Article  PubMed  Google Scholar 

  66. Overbeek LI, Kapusta L, Peer PG, de Korte CL, Thijssen JM, Daniels O. New reference values for echocardiographic dimensions of healthy Dutch children. Eur J Echocardiogr. 2006;7(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  67. Macinnes M, Martin N, Fulton H, McLeod KA. Comparison of a smartphone-based ECG recording system with a standard cardiac event monitor in the investigation of palpitations in children. Arch Dis Child. 2019;104(1):43–7.

    Article  PubMed  Google Scholar 

  68. Budts W, Borjesson M, Chessa M, van Buuren F, Trigo Trindade P, Corrado D, et al. Physical activity in adolescents and adults with congenital heart defects; individualized exercise prescription. Eur Heart J. 2013;34(47):3669–74.

    Article  PubMed  Google Scholar 

  69. Richard P, Denjoy I, Fressart V, Wilson MG, Carre F, Charron P. Advising a cardiac disease gene positive yet phenotype negative or borderline abnormal athlete: is sporting disqualification really necessary? Br J Sports Med. 2012;46(Suppl 1):i59–68.

    Article  PubMed  Google Scholar 

  70. Lipshultz SE, Orav EJ, Wilkinson JD, Towbin JA, Messere JE, Lowe AM, et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet. 2013;382(9908):1889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pelliccia A, Solberg EE, Papadakis M, Adami PE, Biffi A, Caselli S, et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2019;40(1):19–33.

    Article  PubMed  Google Scholar 

  72. Bauce B, Frigo G, Benini G, Michieli P, Basso C, Folino AF, et al. Differences and similarities between arrhythmogenic right ventricular cardiomyopathy and athlete’s heart adaptations. Br J Sports Med. 2010;44(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  73. Steinmetz M, Krause U, Lauerer P, Konietschke F, Aguayo R, Ritter CO, et al. Diagnosing ARVC in pediatric patients applying the revised task force criteria: importance of imaging, 12-lead ECG, and genetics. Pediatr Cardiol. 2018;39(6):1156–64.

    Article  PubMed  Google Scholar 

  74. Pieles GE, Grosse-Wortmann L, Hader M, Fatah M, Chungsomprasong P, Slorach C, et al. Association of Echocardiographic Parameters of Right Ventricular Remodeling and Myocardial Performance With Modified Task Force Criteria in Adolescents With Arrhythmogenic Right Ventricular Cardiomyopathy. Circ Cardiovasc Imaging. 2019;12(4):e007693.

    Article  PubMed  Google Scholar 

  75. Etoom Y, Govindapillai S, Hamilton R, Manlhiot C, Yoo SJ, Farhan M, et al. Importance of CMR within the Task Force Criteria for the diagnosis of ARVC in children and adolescents. J Am Coll Cardiol. 2015;65(10):987–95.

    Article  PubMed  Google Scholar 

  76. Sequeira IB, Kirsh JA, Hamilton RM, Russell JL, Gross GJ. Utility of exercise testing in children and teenagers with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2009;104(3):411–3.

    Article  PubMed  Google Scholar 

  77. Popple E, George K, Somauroo J, Sharma S, Utomi V, Lord R, et al. Right ventricular structure and function in senior and academy elite footballers. Scand J Med Sci Sports. 2018;28(12):2617–24.

    Article  PubMed  Google Scholar 

  78. Thiene GNA, Angelini A, Daliento L, Scognamiglio R, Corrado D. Anatomoclinical aspects of arrhythmogenic right ventricular cardiomyopathy. In: Baroldi GCF, Goodwin JF, editors. Advances in cardiomyopathies. Milano: Springer Verlag; 1990. p. 397–408.

    Chapter  Google Scholar 

  79. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108(21):2672–8.

    Article  PubMed  Google Scholar 

  81. Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99(6):401–8.

    Article  CAS  PubMed  Google Scholar 

  82. Sabatino J, Di Salvo G, Krupickova S, Fraisse A, Prota C, Bucciarelli V, et al. Left ventricular twist mechanics to identify left ventricular noncompaction in childhood. Circ Cardiovasc Imaging. 2019;12(4):e007805.

    Article  PubMed  Google Scholar 

  83. Puranik R, Chow CK, Duflou JA, Kilborn MJ, McGuire MA. Sudden death in the young. Heart Rhythm. 2005;2(12):1277–82.

    Article  PubMed  Google Scholar 

  84. Zipes DP, Link MS, Ackerman MJ, Kovacs RJ, Myerburg RJ, NAM E 3rd. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 9: arrhythmias and conduction defects: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2412–23.

    Article  PubMed  Google Scholar 

  85. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):e91–e220.

    Article  PubMed  Google Scholar 

  86. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.

    Article  PubMed  Google Scholar 

  87. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.

    Article  CAS  PubMed  Google Scholar 

  88. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J. 2006;27(20):2440–7.

    Article  PubMed  Google Scholar 

  89. Mazzanti A, Kanthan A, Monteforte N, Memmi M, Bloise R, Novelli V, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014;63(13):1300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018;15(8):1261–7.

    Article  PubMed  Google Scholar 

  91. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932–63.

    Article  PubMed  Google Scholar 

  92. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm. 2005;2(4):429–40.

    Article  PubMed  Google Scholar 

  93. Sarquella-Brugada G, Campuzano O, Iglesias A, Sanchez-Malagon J, Guerra-Balic M, Brugada J, et al. Genetics of sudden cardiac death in children and young athletes. Cardiol Young. 2013;23(2):159–73.

    Article  PubMed  Google Scholar 

  94. Chockalingam P, Wilde A. The multifaceted cardiac sodium channel and its clinical implications. Heart. 2012;98(17):1318–24.

    Article  CAS  PubMed  Google Scholar 

  95. Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Cardiac channelopathies and sudden infant death syndrome. Cardiology. 2011;119(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  96. Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol. 2008;52(19):1567–73.

    Article  PubMed  Google Scholar 

  97. Milman A, Gourraud JB, Andorin A, Postema PG, Sacher F, Mabo P, et al. Gender differences in patients with Brugada syndrome and arrhythmic events: data from a survey on arrhythmic events in 678 patients. Heart Rhythm. 2018;15(10):1457–65.

    Article  PubMed  Google Scholar 

  98. Andorin A, Behr ER, Denjoy I, Crotti L, Dagradi F, Jesel L, et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm. 2016;13(6):1274–82.

    Article  PubMed  Google Scholar 

  99. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Giordano U, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105(11):1342–7.

    Article  PubMed  Google Scholar 

  100. Michowitz Y, Milman A, Sarquella-Brugada G, Andorin A, Champagne J, Postema PG, et al. Fever-related arrhythmic events in the multicenter survey on arrhythmic events in Brugada syndrome. Heart Rhythm. 2018;15(9):1394–401.

    Article  PubMed  Google Scholar 

  101. Mehrotra S, Juneja R, Naik N, Pavri BB. Successful use of quinine in the treatment of electrical storm in a child with Brugada syndrome. J Cardiovasc Electrophysiol. 2011;22(5):594–7.

    Article  PubMed  Google Scholar 

  102. Hermida JS, Denjoy I, Clerc J, Extramiana F, Jarry G, Milliez P, et al. Hydroquinidine therapy in Brugada syndrome. J Am Coll Cardiol. 2004;43(10):1853–60.

    Article  CAS  PubMed  Google Scholar 

  103. Viskin S. Brugada syndrome in children: don’t ask, don’t tell? Circulation. 2007;115(15):1970–2.

    Article  PubMed  Google Scholar 

  104. Celiker A, Erdogan I, Karagoz T, Ozer S. Clinical experiences of patients with catecholaminergic polymorphic ventricular tachycardia. Cardiol Young. 2009;19(1):45–52.

    Article  PubMed  Google Scholar 

  105. Roston TM, Yuchi Z, Kannankeril PJ, Hathaway J, Vinocur JM, Etheridge SP, et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace. 2018;20(3):541–7.

    Article  PubMed  Google Scholar 

  106. Broendberg AK, Nielsen JC, Bjerre J, Pedersen LN, Kristensen J, Henriksen FL, et al. Nationwide experience of catecholaminergic polymorphic ventricular tachycardia caused by RyR2 mutations. Heart. 2017;103(12):901–9.

    Article  PubMed  Google Scholar 

  107. Napolitano C, Bloise R, Monteforte N, Priori SG. Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation. 2012;125(16):2027–34.

    Article  PubMed  Google Scholar 

  108. Brugada J, Blom N, Sarquella-Brugada G, Blomstrom-Lundqvist C, Deanfield J, Janousek J, et al. Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement. Europace. 2013;15(9):1337–82.

    Article  PubMed  Google Scholar 

  109. Van Hare GF, Javitz H, Carmelli D, Saul JP, Tanel RE, Fischbach PS, et al. Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. J Cardiovasc Electrophysiol. 2004;15(7):759–70.

    Article  PubMed  Google Scholar 

  110. Santinelli V, Radinovic A, Manguso F, Vicedomini G, Ciconte G, Gulletta S, et al. Asymptomatic ventricular preexcitation: a long-term prospective follow-up study of 293 adult patients. Circ Arrhythm Electrophysiol. 2009;2(2):102–7.

    Article  PubMed  Google Scholar 

  111. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of electrocardiographic preexcitation in men. The Manitoba Follow-up Study. Ann Intern Med. 1992;116(6):456–60.

    Article  CAS  PubMed  Google Scholar 

  112. Silva G, de Morais GP, Primo J, Sousa O, Pereira E, Ponte M, et al. Aborted sudden cardiac death as first presentation of Wolff-Parkinson-White syndrome. Rev Port Cardiol. 2013;32(4):325–9.

    Article  PubMed  Google Scholar 

  113. Timmermans C, Smeets JL, Rodriguez LM, Vrouchos G, van den Dool A, Wellens HJ. Aborted sudden death in the Wolff-Parkinson-White syndrome. Am J Cardiol. 1995;76(7):492–4.

    Article  CAS  PubMed  Google Scholar 

  114. Sanchis-Gomar F, Perez-Quilis C, Lippi G, Cervellin G, Leischik R, Lollgen H, et al. Atrial fibrillation in highly trained endurance athletes - Description of a syndrome. Int J Cardiol. 2017;226:11–20.

    Article  PubMed  Google Scholar 

  115. Furlanello F, Bertoldi A, Dallago M, Galassi A, Fernando F, Biffi A, et al. Atrial fibrillation in elite athletes. J Cardiovasc Electrophysiol. 1998;9(8 Suppl):S63–8.

    CAS  PubMed  Google Scholar 

  116. Dendale P, De Meirleir K, De Wolf D. Ectopic atrial tachycardia in a young athlete. Med Sci Sports Exerc. 1994;26(8):937-40.

    Article  PubMed  Google Scholar 

  117. Hubert A, Galand V, Donal E, Pavin D, Galli E, Martins RP, et al. Atrial function is altered in lone paroxysmal atrial fibrillation in male endurance veteran athletes. Eur Heart J Cardiovasc Imaging. 2018;19(2):145–53.

    Article  PubMed  Google Scholar 

  118. Qiu J, Tu T, Zhou S, Liu Q. Disordered myocardium energy metabolism in the progression of atrial fibrillation in highly trained endurance athletes. Int J Cardiol. 2017;233:95.

    Article  PubMed  Google Scholar 

  119. Simmons MA, Rollinson N, Fishberger S, Qin L, Fahey J, Elder RW. Modern incidence of complete heart block in patients with L-looped ventricles: does univentricular status matter? Congenit Heart Dis. 2015;10(5):E237–42.

    Article  PubMed  Google Scholar 

  120. Yan J, Varma SK, Malhotra A, Menahem S. Congenital complete heart block: single tertiary centre experience. Heart Lung Circ. 2012;21(11):666–70.

    Article  PubMed  Google Scholar 

  121. Wang JN, Tsai YC, Lee WL, Lin CS, Wu JM. Complete atrioventricular block following myocarditis in children. Pediatr Cardiol. 2002;23(5):518–21.

    Article  PubMed  Google Scholar 

  122. Gladman G, Davis AM, Fogelman R, Hamilton RM, Gow RM. Torsade de pointes, acquired complete heart block and inappropriately long QT in childhood. Can J Cardiol. 1996;12(7):683–5.

    CAS  PubMed  Google Scholar 

  123. Heidbuchel H, Corrado D, Biffi A, Hoffmann E, Panhuyzen-Goedkoop N, Hoogsteen J, et al. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part II: ventricular arrhythmias, channelopathies and implantable defibrillators. Eur J Cardiovasc Prev Rehabil. 2006;13(5):676–86.

    Article  PubMed  Google Scholar 

  124. Drezner JA, Levine BD, Vetter VL. Reframing the debate: screening athletes to prevent sudden cardiac death. Heart Rhythm. 2013;10(3):454–5.

    Article  PubMed  Google Scholar 

  125. McClean G, Riding NR, Ardern CL, Farooq A, Pieles GE, Watt V, et al. Electrical and structural adaptations of the paediatric athlete’s heart: a systematic review with meta-analysis. Br J Sports Med. 2018;52(4):230.

    Article  PubMed  Google Scholar 

  126. Granacher U, Lesinski M, Busch D, Muehlbauer T, Prieske O, Puta C, et al. Effects of resistance training in youth athletes on muscular fitness and athletic performance: a conceptual model for long-term athlete development. Front Physiol. 2016;7:164.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido E. Pieles .

Editor information

Editors and Affiliations

Review

Review

1.1 Questions

  1. 1.

    Do paediatric athletes between 12 and 16 years of age show significant training related cardiac adaptations?

  2. 2.

    Can adult cardiac screening and diagnostic criteria and guidelines be applied to paediatric athletes?

  3. 3.

    Do paediatric athletes are at risk of developing the same arrhythmias as adult athletes?

1.2 Answers

  1. 1.

    Recent professionalisation of athletic training in academies has led to training intensity and volumes that can lead to cardiac changes in chamber size and ventricular wall thickness and are also visible in the 12-lead ECG as recently shown in a meta-analysis. As in adults, ethnicity specific changes are detectable, and the sports cardiologist needs to be aware of these [125].

  2. 2.

    No specific cardiac screening guidelines exist, the available recommendations are modelled on adult guidelines [22]. The latest adult athlete ECG screening guidelines (International Criteria) have been evaluated in athletes younger than 16 years of age and found to have moderate accuracy and should be used [31].

  3. 3.

    The incidence and types of arrhythmias in paediatric athletes differ slightly from those found in adult athletes. Accessory pathways such as WPW are most common, congenital heart blocks of varying degrees are more often observed. Importantly, as in adults, cardiac arrest can be the first presentation of a ventricular arrhythmia or a myocardial disease, malignant arrhythmias such as CPVT often present in teenage years, and early diagnosis of ventricular arrhythmias and arrhythmogenic cardiomyopathies remains a particular challenge in paediatric athletes. Atrial fibrillation and flutter are very rare.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pieles, G.E., Maxwell, A., Oberhoffer, R. (2020). Specific Populations: Paediatric and Adolescent Athletes. In: Pressler, A., Niebauer, J. (eds) Textbook of Sports and Exercise Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-35374-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35374-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35373-5

  • Online ISBN: 978-3-030-35374-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics