Skip to main content

Specific Cardiovascular Diseases and Competitive Sports Participation: Channelopathies

  • Chapter
  • First Online:
Textbook of Sports and Exercise Cardiology
  • 1260 Accesses

Abstract

Long QT Syndrome, Short QT Syndrome, Brugada Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia are inherited primary disorders with the common denominators of a genetic basis and absence of structural abnormalities. They are clinically relevant as the manifestation ranges from absence of symptoms, syncopal episodes, to sudden cardiac death. In Long QT Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia cardiac events occur either during exercise or emotional stress in otherwise healthy young individuals, being therefore quite relevant for sport physicians. By contrast, in Brugada Syndrome events mainly manifest in resting condition and when there is an increase in the vagal tone; while in Short QT Syndrome trigger is quite variable. The correct diagnosis may be challenging sometimes, but it is crucial as very effective therapies are available and can drastically reduce the risk of life-threatening arrhythmias. Restriction from competitive sport is warranted, although the recommendations are under national regulation that are quite different even within European Countries. However, at least for Long QT Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia there is a wide consensus that restriction for competitive sport should be applied. This chapter will review the principal features of these diseases, with a primary focus on diagnosis and clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merri M, Benhorin J, Alberti M, Locati E, Moss AJ. Electrocardiographic quantitation of ventricular repolarization. Circulation. 1989;80(5):1301–8.

    CAS  PubMed  Google Scholar 

  2. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10(12):1932–63.

    PubMed  Google Scholar 

  3. Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International criteria for electrocardiographic interpretation in athletes: consensus statement. Br J Sports Med. 2017;51(9):704–31.

    PubMed  Google Scholar 

  4. Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International recommendations for electrocardiographic interpretation in athletes. Eur Heart J. 2018;39(16):1466–80.

    PubMed  Google Scholar 

  5. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7.

    PubMed  PubMed Central  Google Scholar 

  6. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.

    PubMed  Google Scholar 

  7. Goldenberg I, Horr S, Moss AJ, Lopes CM, Barsheshet A, McNitt S, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–9.

    PubMed  PubMed Central  Google Scholar 

  8. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 2011;13(8):1077–109.

    PubMed  Google Scholar 

  9. Attwell D. A cellular basis for the primary long Q-T syndromes. Lancet. 1988;331(8595):1136–9.

    Google Scholar 

  10. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.

    CAS  PubMed  Google Scholar 

  11. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805–11.

    CAS  PubMed  Google Scholar 

  12. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12(1):17–23.

    PubMed  Google Scholar 

  13. Romano C, Gemme G, Pongiglione R. Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. (Presentation of 1st case in italian pediatric literature). Clin Pediatr (Bologna). 1963;45:656–83.

    CAS  Google Scholar 

  14. Ward OC. A new familial cardiac syndrome in children. J Irish Med Assoc. 1964;54:103–6.

    CAS  Google Scholar 

  15. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868–77.

    PubMed  PubMed Central  Google Scholar 

  16. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J. 1957;54(1):59–68.

    CAS  PubMed  Google Scholar 

  17. Schwartz PJ, Spazzolini C, Crotti L, Bathen J, Amlie JP, Timothy K, et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation. 2006;113(6):783–90.

    PubMed  Google Scholar 

  18. Wang Q, Li Z, Shen J, Keating MT. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics. 1996;34(1):9–16.

    CAS  PubMed  Google Scholar 

  19. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress lKs function. Nat Genet. 1997;17(3):338–40.

    CAS  PubMed  Google Scholar 

  20. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey GK. (V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384(6604):78–80.

    CAS  PubMed  Google Scholar 

  21. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996;384(6604):80–3.

    CAS  PubMed  Google Scholar 

  22. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97(2):175–87.

    CAS  PubMed  Google Scholar 

  23. Larsen LA, Fosdal I, Andersen PS, Kanters JK, Vuust J, Wettrell G, et al. Recessive Romano-Ward syndrome associated with compound heterozygosity for two mutations in the KVLQT1 gene. Eur J Hum Genet. 1999;7(6):724–8.

    CAS  PubMed  Google Scholar 

  24. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109(15):1834–41.

    PubMed  Google Scholar 

  25. Nguyen H-L, Pieper GH, Wilders R. Andersen–Tawil syndrome: clinical and molecular aspects. Int J Cardiol. 2013;170(1):1–16.

    PubMed  Google Scholar 

  26. Reichenbach H, Meister EM, Theile H. The heart-hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderarztl Prax. 1992;60(2):54–6.

    CAS  PubMed  Google Scholar 

  27. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127(9):1009–17.

    CAS  PubMed  Google Scholar 

  28. Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399(6732):159–62.

    PubMed  Google Scholar 

  29. Crotti L, et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the international calmodulinopathy registry. Eur Heart J. 2019;40(35):2964–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circ Cardiovasc Genet. 2016;9(2):136–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Altmann HM, Tester DJ, Will ML, Middha S, Evans JM, Eckloff BW, et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation. 2015;131(23):2051–60.

    CAS  PubMed  Google Scholar 

  32. Clemens DJ, Tester DJ, Giudicessi JR, Bos JM, Rohatgi RK, Abrams DJ, et al. International triadin knockout syndrome registry. Circ Genomic Precis Med. 2019;12(2):e002419.

    Google Scholar 

  33. Schwartz PJ, Periti M, Malliani A. The long Q-T syndrome. Am Heart J. 1975;89(3):378–90.

    CAS  PubMed  Google Scholar 

  34. Schwartz PJ, Zaza A, Locati E, Moss AJ. Stress and sudden death. The case of the long QT syndrome. Circulation. 1991;83(4 Suppl):II71–80.

    CAS  PubMed  Google Scholar 

  35. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99(4):529–33.

    CAS  PubMed  Google Scholar 

  36. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.

    CAS  PubMed  Google Scholar 

  37. Moss AJ, Robinson JL, Gessman L, Gillespie R, Zareba W, Schwartz PJ, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol. 1999;84(8):876–9.

    CAS  PubMed  Google Scholar 

  38. Buber J, Mathew J, Moss AJ, Hall WJ, Barsheshet A, McNitt S, et al. Risk of recurrent cardiac events after onset of menopause in women with congenital long-QT syndrome types 1 and 2. Circulation. 2011;123(24):2784–91.

    PubMed  PubMed Central  Google Scholar 

  39. Bazett HC. An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol. 1997;2(2):177–94.

    Google Scholar 

  40. Carnethon MR, Anthony MS, Cascio WE, Folsom AR, Rautaharju PM, Liao D, et al. A prospective evaluation of the risk of QT prolongation with hormone replacement therapy: the atherosclerosis risk in communities study. Ann Epidemiol. 2003;13(7):530–6.

    PubMed  Google Scholar 

  41. Stramba-Badiale M, Spagnolo D, Bosi G, Schwartz PJ. Are gender differences in QTc present at birth? MISNES Investigators. Multicenter Italian Study on Neonatal Electrocardiography and Sudden Infant Death Syndrome. Am J Cardiol. 1995;75(17):1277–8.

    CAS  PubMed  Google Scholar 

  42. Schwartz PJ. Idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109(2):399–411.

    CAS  PubMed  Google Scholar 

  43. Schwartz PJ, Malliani A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am Heart J. 1975;89(1):45–50.

    CAS  PubMed  Google Scholar 

  44. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20):2181–4.

    PubMed  Google Scholar 

  45. Sy RW, van der Werf C, Chattha IS, Chockalingam P, Adler A, Healey JS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.

    PubMed  Google Scholar 

  46. Crotti L, Spazzolini C, Porretta AP, Dagradi F, Taravelli E, Petracci B, et al. Vagal reflexes following an exercise stress test. J Am Coll Cardiol. 2012;60(24):2515–24.

    PubMed  PubMed Central  Google Scholar 

  47. Malfatto G, Beria G, Sala S, Bonazzi O, Schwartz PJ. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol. 1994;23(2):296–301.

    CAS  PubMed  Google Scholar 

  48. Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37(18):1456–64.

    PubMed  Google Scholar 

  49. Schwartz PJ, Vanoli E, Crotti L, Spazzolini C, Ferrandi C, Goosen A, et al. Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J Am Coll Cardiol. 2008;51(9):920–9.

    PubMed  Google Scholar 

  50. Brink PA, Crotti L, Corfield V, Goosen A, Durrheim G, Hedley P, et al. Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation. 2005;112(17):2602–10.

    PubMed  Google Scholar 

  51. Schwartz PJ, Crotti L, George AL. Modifier genes for sudden cardiac death. Eur Heart J. 2018;39(44):3925–31. https://doi.org/10.1093/eurheartj/ehy502/5094987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartz PJ, Gentilini D. Can genetics predict risk for sudden cardiac death? The relentless search for the Holy Grail. Eur Heart J. 2018;39(44):3970–2.

    PubMed  Google Scholar 

  53. Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34(40):3109–16.

    PubMed  Google Scholar 

  54. Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment “failures”. Circulation. 2009;119(2):215–21.

    CAS  PubMed  Google Scholar 

  55. Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292(11):1341–4.

    CAS  PubMed  Google Scholar 

  56. Schwartz PJ, Spazzolini C, Crotti L. All LQT3 patients need an ICD: true or false? Heart Rhythm. 2009;6(1):113–20.

    PubMed  Google Scholar 

  57. Chockalingam P, Crotti L, Girardengo G, Johnson JN, Harris KM, van der Heijden JF, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2. J Am Coll Cardiol. 2012;60(20):2092–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwartz PJ, De Ferrari GM, Pugliese L. Cardiac sympathetic denervation 100 years later: Jonnesco would have never believed it. Int J Cardiol. 2017;237:25–8.

    PubMed  Google Scholar 

  59. Johnson JN, Ackerman MJ. Competitive sports participation in athletes with congenital long QT syndrome. JAMA. 2012;308(8):764–5.

    CAS  PubMed  Google Scholar 

  60. Choi G, Kopplin LJ, Tester DJ, Will ML, Haglund CM, Ackerman MJ. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation. 2004;110(15):2119–24.

    PubMed  Google Scholar 

  61. Schwartz PJ, Gnecchi M, Dagradi F, Castelletti S, Parati G, Spazzolini C, et al. From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2. Eur Heart J. 2019.

    Google Scholar 

  62. Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M, et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J. 2018;39(16):1446–55.

    CAS  PubMed  Google Scholar 

  63. Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate: implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.

    CAS  PubMed  Google Scholar 

  64. Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007;116(10):1137–44.

    CAS  PubMed  Google Scholar 

  65. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793–867.

    PubMed  Google Scholar 

  66. Bos JM, Crotti L, Rohatgi RK, Castelletti S, Dagradi F, Schwartz PJ, et al. Mexiletine shortens the QT interval in patients with potassium channel-mediated type 2 long QT syndrome. Circ Arrhythm Electrophysiol. 2019;12(5):e007280.

    CAS  PubMed  Google Scholar 

  67. Giustetto C, Schimpf R, Mazzanti A, Scrocco C, Maury P, Anttonen O, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58(6):587–95.

    PubMed  Google Scholar 

  68. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5.

    CAS  PubMed  Google Scholar 

  69. Bellocq C, van Ginneken ACG, Bezzina CR, Alders M, Escande D, Mannens MMAM, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7.

    PubMed  Google Scholar 

  70. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800–7.

    CAS  PubMed  Google Scholar 

  71. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    PubMed  PubMed Central  Google Scholar 

  72. Mazzanti A, Kanthan A, Monteforte N, Memmi M, Bloise R, Novelli V, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014;63(13):1300–8.

    PubMed  PubMed Central  Google Scholar 

  73. Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57(7):802–12.

    PubMed  Google Scholar 

  74. Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115(3):361–7.

    PubMed  Google Scholar 

  75. Gallagher MM, Magliano G, Yap YG, Padula M, Morgia V, Postorino C, et al. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol. 2006;98(7):933–5.

    PubMed  Google Scholar 

  76. Anttonen O, Junttila MJ, Maury P, Schimpf R, Wolpert C, Borggrefe M, et al. Differences in twelve-lead electrocardiogram between symptomatic and asymptomatic subjects with short QT interval. Heart Rhythm. 2009;6(2):267–71.

    PubMed  Google Scholar 

  77. Dhutia H, Malhotra A, Parpia S, Gabus V, Finocchiaro G, Mellor G, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med. 2016;50(2):124–9.

    PubMed  Google Scholar 

  78. Schimpf R, Wolpert C, Gaita F, Giustetto C, Borggrefe M. Short QT syndrome. Cardiovasc Res. 2005;67(3):357–66.

    CAS  PubMed  Google Scholar 

  79. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.

    PubMed  Google Scholar 

  80. Watanabe H, Makiyama T, Koyama T, Kannankeril PJ, Seto S, Okamura K, et al. High prevalence of early repolarization in short QT syndrome. Heart Rhythm. 2010;7(5):647–52.

    PubMed  Google Scholar 

  81. Giustetto C, Scrocco C, Schimpf R, Maury P, Mazzanti A, Levetto M, et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Eurpace. 2015;17(4):628–34.

    Google Scholar 

  82. Tülümen E, Giustetto C, Wolpert C, Maury P, Anttonen O, Probst V, et al. PQ segment depression in patients with short QT syndrome: a novel marker for diagnosing short QT syndrome? Heart Rhythm. 2014;11(6):1024–30.

    PubMed  PubMed Central  Google Scholar 

  83. Wolpert C, Schimpf R, Giustetto C, Antzelevitch C, Cordeiro J, Dumaine R, et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005;16(1):54–8.

    PubMed  PubMed Central  Google Scholar 

  84. Liu X-K, Katchman A, Whitfield BH, Wan G, Janowski EM, Woosley RL, et al. In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovasc Res. 2003;57(1):28–36.

    CAS  PubMed  Google Scholar 

  85. Schimpf R, Wolpert C, Bianchi F, Giustetto C, Gaita F, Bauersfeld U, et al. Congenital short QT syndrome and implantable cardioverter defibrillator treatment: inherent risk for inappropriate shock delivery. J Cardiovasc Electrophysiol. 2003;14(12):1273–7.

    PubMed  Google Scholar 

  86. Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calò L, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9.

    CAS  PubMed  Google Scholar 

  87. Antzelevitch C, et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm. 2005;2(4):429–40.

    PubMed  Google Scholar 

  88. Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29(10):1130–59.

    PubMed  PubMed Central  Google Scholar 

  89. Papadakis M, Papatheodorou E, Mellor G, Raju H, Bastiaenen R, Wijeyeratne Y, et al. The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J Am Coll Cardiol. 2018;71(11):1204–14.

    PubMed  Google Scholar 

  90. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud J-B, Simonet F, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45(9):1044–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33–46.

    PubMed  Google Scholar 

  92. Wilde AAM, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol. 2013;10(10):571–83.

    CAS  PubMed  Google Scholar 

  93. Wang QI, Ohno S, Ding W-G, Fukuyama M, Miyamoto A, Itoh H, et al. Gain-of-function KCNH2 mutations in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2014;25(5):522–30.

    CAS  PubMed  Google Scholar 

  94. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;129(10):1092–103.

    CAS  PubMed  Google Scholar 

  95. Hennessey JA, Marcou CA, Wang C, Wei EQ, Wang C, Tester DJ, et al. FGF12 is a candidate Brugada syndrome locus. Heart Rhythm. 2013;10(12):1886–94.

    PubMed  Google Scholar 

  96. Crotti L, Marcou CA, Tester DJ, Castelletti S, Giudicessi JR, Torchio M, et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing. J Am Coll Cardiol. 2012;60(15):1410–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bastiaenen R, Cox AT, Castelletti S, Wijeyeratne YD, Colbeck N, Pakroo N, et al. Late gadolinium enhancement in Brugada syndrome: a marker for subtle underlying cardiomyopathy? Heart Rhythm. 2017;14(4):583–9.

    PubMed  Google Scholar 

  98. Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30(6):1512–20.

    CAS  PubMed  Google Scholar 

  99. Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol. 2017;14(12):744–56.

    CAS  PubMed  Google Scholar 

  100. Brugada J, Brugada P, Brugada R. The syndrome of right bundle branch block ST segment elevation in V1 to V3 and sudden death—the Brugada syndrome. Eurpace. 1999;1(3):156–66.

    CAS  Google Scholar 

  101. Quan X-Q, Li S, Liu R, Zheng K, Wu X-F, Tang Q. A meta-analytic review of prevalence for Brugada ECG patterns and the risk for death. Medicine (Baltimore). 2016;95(50):e5643.

    Google Scholar 

  102. Gehi AK, Duong TD, Metz LD, Gomes JA, Mehta D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006;17(6):577–83.

    PubMed  Google Scholar 

  103. Priori SG, Napolitano C, Giordano U, Collisani G, Memmi M. Brugada syndrome and sudden cardiac death in children. Lancet Lond Engl. 2000;355(9206):808–9.

    CAS  Google Scholar 

  104. Probst V, Denjoy I, Meregalli PG, Amirault J-C, Sacher F, Mansourati J, et al. Clinical aspects and prognosis of Brugada syndrome in children. Circulation. 2007;115(15):2042–8.

    PubMed  Google Scholar 

  105. Mizusawa Y, Wilde AAM. Brugada syndrome. Circ Arrhythm Electrophysiol. 2012;5(3):606–16.

    PubMed  Google Scholar 

  106. Chockalingam P, Rammeloo LA, Postema PG, Hruda J, Clur S-AB, Blom NA, et al. Fever-induced life-threatening arrhythmias in children harboring an SCN5A mutation. Pediatrics. 2011;127(1):e239–44.

    PubMed  Google Scholar 

  107. Antzelevitch C, Brugada R. Fever and Brugada syndrome. Pacing Clin Electrophysiol. 2002;25(11):1537–9.

    PubMed  Google Scholar 

  108. Miyazaki T, Mitamura H, Miyoshi S, Soejima K, Aizawa Y, Ogawa S. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol. 1996;27(5):1061–70.

    CAS  PubMed  Google Scholar 

  109. Kasanuki H, Ohnishi S, Ohtuka M, Matsuda N, Nirei T, Isogai R, et al. Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation. 1997;95(9):2277–85.

    CAS  PubMed  Google Scholar 

  110. Agostini D, Scanu P, Loiselet P, Babatasi G, Darlas Y, Grollier G, et al. Iodine-123-metaiodobenzylguanidine SPECT of regional cardiac adrenergic denervation in Brugada syndrome. J Nucl Med. 1998;39(7):1129–32.

    CAS  PubMed  Google Scholar 

  111. Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T, et al. Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J Am Coll Cardiol. 2010;56(19):1576–84.

    PubMed  Google Scholar 

  112. Takigawa M, Noda T, Shimizu W, Miyamoto K, Okamura H, Satomi K, et al. Seasonal and circadian distributions of ventricular fibrillation in patients with Brugada syndrome. Heart Rhythm. 2008;5(11):1523–7.

    PubMed  Google Scholar 

  113. Gray B, Kirby A, Kabunga P, Freedman SB, Yeates L, Kanthan A, et al. Twelve-lead ambulatory electrocardiographic monitoring in Brugada syndrome: potential diagnostic and prognostic implications. Heart Rhythm. 2017;14(6):866–74.

    PubMed  Google Scholar 

  114. Ikeda T, Abe A, Yusu S, Nakamura K, Ishiguro H, Mera H, et al. The full stomach test as a novel diagnostic technique for identifying patients at risk of Brugada syndrome. J Cardiovasc Electrophysiol. 2006;17(6):602–7.

    PubMed  Google Scholar 

  115. Nishizaki M, Sakurada H, Mizusawa Y, Niki S, Hayashi T, Tanaka Y, et al. Influence of meals on variations of ST segment elevation in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2008;19(1):62–8.

    PubMed  Google Scholar 

  116. Morita H, Kusano-Fukushima K, Nagase S, Fujimoto Y, Hisamatsu K, Fujio H, et al. Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J Am Coll Cardiol. 2002;40(8):1437–44.

    PubMed  Google Scholar 

  117. Eckardt L, Kirchhof P, Johna R, Haverkamp W, Breithardt G, Borggrefe M. Wolff-Parkinson-White syndrome associated with Brugada syndrome. Pacing Clin Electrophysiol. 2001;24(9 Pt 1):1423–4.

    CAS  PubMed  Google Scholar 

  118. Schimpf R, Giustetto C, Eckardt L, Veltmann C, Wolpert C, Gaita F, et al. Prevalence of supraventricular tachyarrhythmias in a cohort of 115 patients with Brugada syndrome. Ann Noninvasive Electrocardiol. 2008;13(3):266–9.

    PubMed  PubMed Central  Google Scholar 

  119. Kusano KF, Taniyama M, Nakamura K, Miura D, Banba K, Nagase S, et al. Atrial fibrillation in patients with Brugada syndrome relationships of gene mutation, electrophysiology, and clinical backgrounds. J Am Coll Cardiol. 2008;51(12):1169–75.

    PubMed  Google Scholar 

  120. Olivotto I, Finocchiaro G, Maurizi N, Crotti L. Common presentation of rare cardiac diseases: arrhythmias. Int J Cardiol. 2018;257:351–7.

    PubMed  Google Scholar 

  121. Morita H, Fukushima-Kusano K, Nagase S, Miyaji K, Hiramatsu S, Banba K, et al. Sinus node function in patients with Brugada-type ECG. Circ J. 2004;68(5):473–6.

    PubMed  Google Scholar 

  122. Takehara N, Makita N, Kawabe J, Sato N, Kawamura Y, Kitabatake A, et al. A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill. J Intern Med. 2004;255(1):137–42.

    CAS  PubMed  Google Scholar 

  123. Wang DW, Viswanathan PC, Balser JR, George AL, Benson DW. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation. 2002;105(3):341–6.

    CAS  PubMed  Google Scholar 

  124. Smits JPP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol. 2005;38(6):969–81.

    CAS  PubMed  Google Scholar 

  125. Makiyama T, Akao M, Tsuji K, Doi T, Ohno S, Takenaka K, et al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol. 2005;46(11):2100–6.

    CAS  PubMed  Google Scholar 

  126. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott J-J, et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118(6):2260–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23(1):20–1.

    CAS  PubMed  Google Scholar 

  128. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112(7):1019–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Brugada P, Brugada J, Brugada R. Arrhythmia induction by antiarrhythmic drugs. Pacing Clin Electrophysiol. 2000;23(3):291–2.

    CAS  PubMed  Google Scholar 

  130. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000;101(5):510–5.

    CAS  PubMed  Google Scholar 

  131. Shimizu W, Matsuo K, Takagi M, Tanabe Y, Aiba T, Taguchi A, et al. Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of eighty-seven-lead body surface potential mapping and its application to twelve-lead electrocardiograms. J Cardiovasc Electrophysiol. 2000;11(4):396–404.

    CAS  PubMed  Google Scholar 

  132. Nagase S, Kusano KF, Morita H, Nishii N, Banba K, Watanabe A, et al. Longer repolarization in the epicardium at the right ventricular outflow tract causes type 1 electrocardiogram in patients with Brugada syndrome. J Am Coll Cardiol. 2008;51(12):1154–61.

    PubMed  Google Scholar 

  133. Miyamoto K, Yokokawa M, Tanaka K, Nagai T, Okamura H, Noda T, et al. Diagnostic and prognostic value of a type 1 Brugada electrocardiogram at higher (third or second) V1 to V2 recording in men with Brugada syndrome. Am J Cardiol. 2007;99(1):53–7.

    PubMed  Google Scholar 

  134. Alings M, Wilde A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation. 1999;99(5):666–73.

    CAS  PubMed  Google Scholar 

  135. Crea P, Picciolo G, Luzza F, Oreto G. ST segment depression in the inferior leads in Brugada pattern: a new sign. Ann Noninvasive Electrocardiol. 2015;20(6):561–5.

    PubMed  Google Scholar 

  136. Morita H, Watanabe A, Morimoto Y, Kawada S, Tachibana M, Nakagawa K, et al. Distribution and prognostic significance of fragmented QRS in patients with Brugada syndrome. Circ Arrhythm Electrophysiol. 2017;10(3).

    Google Scholar 

  137. Sarkozy A, Chierchia G-B, Paparella G, Boussy T, De Asmundis C, Roos M, et al. Inferior and lateral electrocardiographic repolarization abnormalities in Brugada syndrome. Circ Arrhythm Electrophysiol. 2009;2(2):154–61.

    PubMed  Google Scholar 

  138. Potet F, Mabo P, Le Coq G, Probst V, Schott J-J, Airaud F, et al. Novel brugada SCN5A mutation leading to ST segment elevation in the inferior or the right precordial leads. J Cardiovasc Electrophysiol. 2003;14(2):200–3.

    PubMed  Google Scholar 

  139. Kalla H, Yan GX, Marinchak R. Ventricular fibrillation in a patient with prominent J (Osborn) waves and ST segment elevation in the inferior electrocardiographic leads: a Brugada syndrome variant? J Cardiovasc Electrophysiol. 2000;11(1):95–8.

    CAS  PubMed  Google Scholar 

  140. Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res. 1999;85(12):1206–13.

    CAS  PubMed  Google Scholar 

  141. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Brignole M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102(20):2509–15.

    CAS  PubMed  Google Scholar 

  142. Pitzalis MV, Anaclerio M, Iacoviello M, Forleo C, Guida P, Troccoli R, et al. QT-interval prolongation in right precordial leads: an additional electrocardiographic hallmark of Brugada syndrome. J Am Coll Cardiol. 2003;42(9):1632–7.

    PubMed  Google Scholar 

  143. Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest. 2008;118(6):2219–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cerrato N, Giustetto C, Gribaudo E, Richiardi E, Barbonaglia L, Scrocco C, et al. Prevalence of type 1 brugada electrocardiographic pattern evaluated by twelve-lead twenty-four-hour holter monitoring. Am J Cardiol. 2015;115(1):52–6.

    PubMed  Google Scholar 

  145. García-Fuertes D, Villanueva-Fernández E, Crespín-Crespín M, Puchol A, Pachón M, Arias MA. Type 1 Brugada pattern unmasked during the recovery period of an exercise stress test. Arq Bras Cardiol. 2016;106(5):447–9.

    PubMed  PubMed Central  Google Scholar 

  146. Subramanian M, Prabhu MA, Harikrishnan MS, Shekhar SS, Pai PG, Natarajan K. The utility of exercise testing in risk stratification of asymptomatic patients with type 1 Brugada pattern. J Cardiovasc Electrophysiol. 2017;28(6):677–83.

    PubMed  Google Scholar 

  147. Therasse D, Sacher F, Petit B, Babuty D, Mabo P, Martins R, et al. Sodium-channel blocker challenge in the familial screening of Brugada syndrome: safety and predictors of positivity. Heart Rhythm. 2017;14(10):1442–8.

    PubMed  Google Scholar 

  148. Meregalli PG, Wilde AAM, Tan HL. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc Res. 2005;67(3):367–78.

    CAS  PubMed  Google Scholar 

  149. Chauveau S, Le Vavasseur O, Chevalier P. Delayed diagnosis of Brugada syndrome in a patient with aborted sudden cardiac death and initial negative flecainide challenge. Clin Case Rep. 2017;5(12):2022–4.

    PubMed  PubMed Central  Google Scholar 

  150. Wolpert C, Echternach C, Veltmann C, Antzelevitch C, Thomas GP, Spehl S, et al. Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm. 2005;2(3):254–60.

    PubMed  PubMed Central  Google Scholar 

  151. Baranchuk A, Nguyen T, Ryu MH, Femenía F, Zareba W, Wilde AAM, et al. Brugada phenocopy: new terminology and proposed classification. Ann Noninvasive Electrocardiol. 2012;17(4):299–314.

    PubMed  PubMed Central  Google Scholar 

  152. Wang K, Asinger RW, Marriott HJL. ST-segment elevation in conditions other than acute myocardial infarction. N Engl J Med. 2003;349(22):2128–35.

    CAS  PubMed  Google Scholar 

  153. Myers GB. Other QRS-T patterns that may be mistaken for myocardial infarction; IV. alterations in blood potassium; myocardial ischemia; subepicardial myocarditis; distortion associated with arrhythmias. Circulation. 1950;2(1):75–93.

    CAS  PubMed  Google Scholar 

  154. Abbott JA, Cheitlin MD. The nonspecific camel-hump sign. JAMA. 1976;235(4):413–4.

    CAS  PubMed  Google Scholar 

  155. Hersch C. Electrocardiographic changes in subarachnoid haemorrhage, meningitis, and intracranial space-occupying lesions. Br Heart J. 1964;26:785–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Perloff JK, Henze E, Schelbert HR. Alterations in regional myocardial metabolism, perfusion, and wall motion in Duchenne muscular dystrophy studied by radionuclide imaging. Circulation. 1984;69(1):33–42.

    CAS  PubMed  Google Scholar 

  157. Kataoka H. Electrocardiographic patterns of the Brugada syndrome in right ventricular infarction/ischemia. Am J Cardiol. 2000;86(9):1056.

    CAS  PubMed  Google Scholar 

  158. Tarín N, Farré J, Rubio JM, Tuñón J, Castro-Dorticós J. Brugada-like electrocardiographic pattern in a patient with a mediastinal tumor. Pacing Clin Electrophysiol. 1999;22(8):1264–6.

    PubMed  Google Scholar 

  159. Tomcsányi J, Simor T, Papp L. Images in cardiology. Haemopericardium and Brugada-like ECG pattern in rheumatoid arthritis. Heart. 2002;87(3):234.

    PubMed  PubMed Central  Google Scholar 

  160. Corrado D, Basso C, Buja G, Nava A, Rossi L, Thiene G. Right bundle branch block, right precordial st-segment elevation, and sudden death in young people. Circulation. 2001;103(5):710–7.

    CAS  PubMed  Google Scholar 

  161. Corrado D, Nava A, Buja G, Martini B, Fasoli G, Oselladore L, et al. Familial cardiomyopathy underlies syndrome of right bundle branch block, ST segment elevation and sudden death. J Am Coll Cardiol. 1996;27(2):443–8.

    CAS  PubMed  Google Scholar 

  162. Merrill JP, Levine HD, Somerville W, Smith S. Clinical recognition and treatment of acute potassium intoxication. Ann Intern Med. 1950;33(4):797–830.

    CAS  PubMed  Google Scholar 

  163. Ortega-Carnicer J, Benezet J, Ruiz-Lorenzo F, Alcázar R. Transient Brugada-type electrocardiographic abnormalities in renal failure reversed by dialysis. Resuscitation. 2002;55(2):215–9.

    PubMed  Google Scholar 

  164. Douglas PS, Carmichael KA, Palevsky PM. Extreme hypercalcemia and electrocardiographic changes. Am J Cardiol. 1984;54(6):674–5.

    CAS  PubMed  Google Scholar 

  165. Sridharan MR, Horan LG. Electrocardiographic J wave of hypercalcemia. Am J Cardiol. 1984;54(6):672–3.

    CAS  PubMed  Google Scholar 

  166. Osborn JJ. Experimental hypothermia; respiratory and blood pH changes in relation to cardiac function. Am J Phys. 1953;175(3):389–98.

    CAS  Google Scholar 

  167. Noda T, Shimizu W, Tanaka K, Chayama K. Prominent J wave and ST segment elevation: serial electrocardiographic changes in accidental hypothermia. J Cardiovasc Electrophysiol. 2003;14(2):223.

    PubMed  Google Scholar 

  168. Read DH, Harrington DD. Experimentally induced thiamine deficiency in beagle dogs: clinical observations. Am J Vet Res. 1981;42(6):984–91.

    CAS  PubMed  Google Scholar 

  169. Chevallier S, Forclaz A, Tenkorang J, Ahmad Y, Faouzi M, Graf D, et al. New electrocardiographic criteria for discriminating between Brugada types 2 and 3 patterns and incomplete right bundle branch block. J Am Coll Cardiol. 2011;58(22):2290–8.

    PubMed  Google Scholar 

  170. Serra G, Baranchuk A, Bayés-De-Luna A, Brugada J, Goldwasser D, Capulzini L, et al. New electrocardiographic criteria to differentiate the Type-2 Brugada pattern from electrocardiogram of healthy athletes with r’-wave in leads V1/V2. Europace. 2014;16(11):1639–45.

    PubMed  Google Scholar 

  171. Pospiech T, Jaussaud J, Sacher F, Hooks DA, Haïssaguerre M, Douard H. Characterization of repolarization in Brugada syndrome patients during exercise testing: dynamic angle evaluation. J Electrocardiol. 2015;48(5):879–86.

    PubMed  Google Scholar 

  172. Zorzi A, Leoni L, Di Paolo FM, Rigato I, Migliore F, Bauce B, et al. Differential diagnosis between early repolarization of athlete’s heart and coved-type Brugada electrocardiogram. Am J Cardiol. 2015;115(4):529–32.

    PubMed  Google Scholar 

  173. Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation. 2010;121(5):635–43.

    CAS  PubMed  Google Scholar 

  174. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Giordano U, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105(11):1342–7.

    PubMed  Google Scholar 

  175. Priori SG, Gasparini M, Napolitano C, Della Bella P, Ottonelli AG, Sassone B, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012;59(1):37–45.

    PubMed  Google Scholar 

  176. Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3: a marker for sudden death in patients without demonstrable structural heart disease. Circulation. 1998;97(5):457–60.

    CAS  PubMed  Google Scholar 

  177. Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol. 2008;52(19):1567–73.

    PubMed  Google Scholar 

  178. Yamagata K, Horie M, Aiba T, Ogawa S, Aizawa Y, Ohe T, et al. Genotype-phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with Brugada syndrome: a Japanese multicenter registry. Circulation. 2017;135(23):2255–70.

    CAS  PubMed  Google Scholar 

  179. Huang Z, Patel C, Li W, Xie Q, Wu R, Zhang L, et al. Role of signal-averaged electrocardiograms in arrhythmic risk stratification of patients with Brugada syndrome: a prospective study. Heart Rhythm. 2009;6(8):1156–62.

    PubMed  Google Scholar 

  180. Kawata H, Morita H, Yamada Y, Noda T, Satomi K, Aiba T, et al. Prognostic significance of early repolarization in inferolateral leads in Brugada patients with documented ventricular fibrillation: a novel risk factor for Brugada syndrome with ventricular fibrillation. Heart Rhythm. 2013;10(8):1161–8.

    PubMed  Google Scholar 

  181. Maury P, Sacher F, Gourraud J-B, Pasquié J-L, Raczka F, Bongard V, et al. Increased Tpeak-Tend interval is highly and independently related to arrhythmic events in Brugada syndrome. Heart Rhythm. 2015;12(12):2469–76.

    PubMed  Google Scholar 

  182. Zumhagen S, Zeidler EM, Stallmeyer B, Ernsting M, Eckardt L, Schulze-Bahr E. Tpeak-Tend interval and Tpeak-Tend/QT ratio in patients with Brugada syndrome. Eurpace. 2016;18(12):1866–72.

    Google Scholar 

  183. Tse G. (Tpeak - Tend)/QRS and (Tpeak - Tend)/(QT × QRS): novel markers for predicting arrhythmic risk in the Brugada syndrome. Eurpace. 2017;19(4):696.

    Google Scholar 

  184. Rollin A, Sacher F, Gourraud JB, Pasquié JL, Raczka F, Duparc A, et al. Prevalence, characteristics, and prognosis role of type 1 ST elevation in the peripheral ECG leads in patients with Brugada syndrome. Heart Rhythm. 2013;10(7):1012–8.

    CAS  PubMed  Google Scholar 

  185. Fish JM, Antzelevitch C. Cellular mechanism and arrhythmogenic potential of T-wave alternans in the Brugada syndrome. J Cardiovasc Electrophysiol. 2008;19(3):301–8.

    PubMed  Google Scholar 

  186. Tada T, Kusano KF, Nagase S, Banba K, Miura D, Nishii N, et al. Clinical significance of macroscopic T-wave alternans after sodium channel blocker administration in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2008;19(1):56–61.

    PubMed  Google Scholar 

  187. Sroubek J, Probst V, Mazzanti A, Delise P, Hevia JC, Ohkubo K, et al. Programmed ventricular stimulation for risk stratification in the Brugada syndrome: a pooled analysis. Circulation. 2016;133(7):622–30.

    PubMed  PubMed Central  Google Scholar 

  188. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91(5):1512–9.

    CAS  PubMed  Google Scholar 

  189. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106(1):69–74.

    CAS  PubMed  Google Scholar 

  190. Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.

    CAS  PubMed  Google Scholar 

  191. Tester DJ, Arya P, Will M, Haglund CM, Farley AL, Makielski JC, et al. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm. 2006;3(7):800–5.

    PubMed  Google Scholar 

  192. Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91(4):703–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012;21(12):2759–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff J-M, Vaksmann G, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet. 2005;42(11):863–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. van der Werf C, Nederend I, Hofman N, van Geloven N, Ebink C, Frohn-Mulder IME, et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012;5(4):748–56.

    PubMed  Google Scholar 

  197. Fisher JD, Krikler D, Hallidie-Smith KA. Familial polymorphic ventricular arrhythmias: a quarter century of successful medical treatment based on serial exercise-pharmacologic testing. J Am Coll Cardiol. 1999;34(7):2015–22.

    CAS  PubMed  Google Scholar 

  198. Marjamaa A, Hiippala A, Arrhenius B, Lahtinen AM, Kontula K, Toivonen L, et al. Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2012;23(2):194–9.

    PubMed  Google Scholar 

  199. Kimura H, Zhou J, Kawamura M, Itoh H, Mizusawa Y, Ding W-G, et al. Phenotype variability in patients carrying KCNJ2 mutations. Circ Cardiovasc Genet. 2012;5(3):344–53.

    CAS  PubMed  Google Scholar 

  200. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010;31(7):806–14.

    PubMed  PubMed Central  Google Scholar 

  201. Leinonen JT, Crotti L, Djupsjöbacka A, Castelletti S, Junna N, Ghidoni A, et al. The genetics underlying idiopathic ventricular fibrillation: a special role for catecholaminergic polymorphic ventricular tachycardia? Int J Cardiol. 2018;250:139–45.

    PubMed  Google Scholar 

  202. Giudicessi JR, Ackerman MJ. Exercise testing oversights underlie missed and delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia in young sudden cardiac arrest survivors. Heart Rhythm. 2019;16(8):1232–9.

    PubMed  Google Scholar 

  203. Hayashi M, Denjoy I, Extramiana F, Maltret A, Buisson NR, Lupoglazoff J-M, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119(18):2426–34.

    CAS  PubMed  Google Scholar 

  204. Hayashi M, Denjoy I, Hayashi M, Extramiana F, Maltret A, Roux-Buisson N, et al. The role of stress test for predicting genetic mutations and future cardiac events in asymptomatic relatives of catecholaminergic polymorphic ventricular tachycardia probands. Eurpace. 2012;14(9):1344–51.

    Google Scholar 

  205. Kannankeril PJ, Moore JP, Cerrone M, Priori SG, Kertesz NJ, Ro PS, et al. Efficacy of Flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017;2(7):759–66.

    PubMed  PubMed Central  Google Scholar 

  206. De Ferrari GM, Dusi V, Spazzolini C, Bos JM, Abrams DJ, Berul CI, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015;131(25):2185–93.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Crotti .

Editor information

Editors and Affiliations

Review

Review

1.1 Clinical Case 1

An 18-year-old girl has a syncope whilst swimming. Her physical examination is normal. She denies taking medications and any hormonal condition. On blood tests, potassium is 4.4 mEq/lt (normal values 3.5–5 mEq/lt). Also, glycemia is normal. Her ECG is shown below (Fig. 20.6). QTc is 460 ms.

Fig. 20.6
figure 6

Clinical case 1. Basal ECG trace. It shows sinus rhythm, normal PR and QRS conduction, upper normal QTc (460 ms)

1.1.1 Question 1

Would you perform further investigations?

  1. (a)

    The QTc is upper normal, the syncope may be of vasovagal origin. A tilt-testing is the next step.

  2. (b)

    Her ECG is normal. Electroencephalogram and head MRI should be performed to exclude an epilepsy.

  3. (c)

    The QTc is upper normal, we cannot exclude a long QT syndrome based on this ECG: detailed personal and family history collection, exercise stress testing and 12-lead 24-h ECG monitoring should be performed.

  4. (d)

    The QTc is upper normal, we cannot exclude a long QT syndrome based on this ECG: a genetic screening should be performed.

The patient reports a previous syncope when aged 16 whilst practicing sport at school. Her family history is positive for syncopal events: her mother reports loss-of-consciousness events in her teenage, all of them occurring during sport activity. Brain MRI and echocardiogram are normal. During exercise stress-testing, a QTc inability to shorten was observed. The ECG on the fourth minute of the recovery phase is shown below (Fig. 20.7). A 24-h 12-lead ECG monitoring was performed, and biphasic T-waves were observed during recording.

Fig. 20.7
figure 7

Clinical case 1. ECG trace on the fourth minute of the recovery phase of the exercise stress test. It shows marked prolonged QT interval (QTc 581 ms in lead II; QTc 589 in lead V1)

1.1.2 Question 2

Based on the new information, what would you do next?

  1. (a)

    According to the Schwartz score (=5), this patient has a high probability to be affected with long QT syndrome: a beta-blocker therapy with metoprolol should be started.

  2. (b)

    According to the Schwartz score (=5), this patient has a high probability to be affected with long QT syndrome: a genetic testing should be performed. If positive, she will be started on betablocker therapy.

  3. (c)

    According to the Schwartz score (=5), this patient has a high probability to be affected with long QT syndrome: a genetic testing should be performed, and the patient should be started on bisoprolol.

  4. (d)

    According to the Schwartz score (=5), this patient has a high probability to be affected with long QT syndrome: a genetic testing should be performed and beta-booker therapy (propranolol or nadolol) should be prescribed. She should also be advised to avoid QT-prolonging drugs and to keep within a normal range potassium levels. Participation in competitive sports should be forbidden.

The patient was started on Propranolol 2 mg/kg/die. Genetic screening was performed and a KCNQ1 mutation was identified. Cascade genetic screening was carried out and the mother was found to carry the same mutation. Since started on therapy, the patient has been asymptomatic.

1.1.3 Question 3

Which one of the following may be included among the ECG features of SQTS?

  1. (a)

    Biphasic T-waves

  2. (b)

    Long QT segment

  3. (c)

    tall, sharp, narrow, symmetrical T waves

  4. (d)

    a long PQ interval

1.1.4 Question 4

Which one of the following may be responsible of a shorter QTc?

  1. (a)

    Hypokalaemia

  2. (b)

    Androgens use

  3. (c)

    Alkalosis

  4. (d)

    Hydroquinidine toxicity

1.1.5 Question 5

Which one of the following is false? A diagnosis of BrS can be performed

  1. (a)

    in the presence of a type 1 ECG recorded at fourth intercostal space

  2. (b)

    in the presence of a type 1 ECG recorded at third or second intercostal space

  3. (c)

    when a type 2 to type 1 pattern conversion is observed after sodium channel blocker administration at fourth intercostal space

  4. (d)

    when drug-induced conversion of type 3 to type 2 ST-segment elevation after sodium channel blocker administration is observed in fourth intercostal space

1.1.6 Question 6

Which one of the following is not responsible of BrS pattern?

  1. (a)

    Hyperkalaemia

  2. (b)

    Fever

  3. (c)

    Hypothermia

  4. (d)

    Anti-allergic drugs

1.2 Clinical Case 2

A 30-year-old swimmer with no family history for sudden death, syncope, or seizures started to report palpitations mainly during exercise and emotional stress. Basal ECG is shown below (Fig. 20.8).

Fig. 20.8
figure 8

Basal ECG of clinical case 2

1.2.1 Question 7

Based on the ECG, what is the most likely diagnosis?

  1. (a)

    Long QT Syndrome

  2. (b)

    Short QT Syndrome

  3. (c)

    Brugada Syndrome

  4. (d)

    None of them

Echocardiogram was normal. A 12-leads 24-h Holter monitoring showed a run of non-sustained polymorphic ventricular tachycardia whilst exercising.

1.2.2 Question 8

What would be the most useful test to perform?

  1. (a)

    Exercise stress testing

  2. (b)

    Cardiac Magnetic Resonance

  3. (c)

    Flecainide drug challenging test

  4. (d)

    Electrophysiological study

Exercise stress testing was performed (Bruce protocol). Isolated ventricular ectopic beats were noted when his heart rate was 113 bpm (Fig. 20.9a). A triplet and a couple appeared at 115 bpm (Fig. 20.9b) and a NSVT appeared at 123 bpm (Fig. 20.9c). The test was therefore interrupted, and arrhythmias disappeared as soon as he stopped cycling. The patient was started on Nadolol 2 mg/kg/die. Genetic analysis was performed on the major CPVT-related genes and a disease-causing mutation was identified on RyR2. The same mutation was then detected in the father.

Fig. 20.9
figure 9

Electrocardiographic strips of the exercise stress test of clinical case 2. They show increasing frequency and complexity of ventricular arrhythmias with the increase in the workload

1.2.3 Answers

  1. 1.

    Correct answer: (c).

    Swimming is a well-known arrhythmic trigger in LQTS and the diagnosis cannot be excluded by a ECG [6]. Family history would elucidate her probability of being affected with a congenital Long QT Syndrome. The workup for clinical diagnosis includes exercise stress test and 12-lead 24-h ECG monitoring [2]. Genetic screening is recommended when there is an established strong clinical suspicious of LQTS [8].

  2. 2.

    Correct answer: (d).

    The Schwartz score of the patient is 5, this equals high probability of being affected with Long QT Syndrome (Table 20.1) [44, 53]. Therefore, betablocker therapy should be started [2]. Propranolol and nadolol are the two betablockers more effective in preventing arrhythmic events in patients with LQTS [57]. The trigger of the event and the morphology of the ECG are suggestive for LQT1 [6]. In this form, events typically occur upon exercise or stress, as the impairment of the IKs current prevents the shortening of the QT during increases in heart rate [6]. Therefore patients are not allowed to participate in competitive sport activities [53]. Genetic screening is mandatory to confirm diagnosis: it would allow the genetic screening of family members and a genetic-specific therapy [8].

  3. 3.

    Correct answer: (c).

    Besides the short QTc, basal ECG of affected patients present with the T wave initiating immediately from the S wave, therefore with a short or absent ST segment [78]. T waves are tall, sharp, narrow, fine and symmetrical, especially in leads V2–V4, suggesting increased transmural dispersion of repolarization [78]. The heterogeneous abbreviation of atrial repolarization is responsible for the presence of a PQ depression ≥0.05 mV [82].

  4. 4.

    Correct answer: (b).

    Acquired causes of short QTc include electrolyte imbalance, such as hyperkalemia and hypercalcemia, acidosis, digitalis toxicity, increased vagal tone, and androgen use. A study in orchiectomized male rabbits showed that dihydrotestosterone (DHT) increased IK1 and IKr current densities and produced a left-shift in the V(1/2) for IKr that could account, at least in part, for the observed differences in QTc between males and females [84].

  5. 5.

    Correct answer: (d).

    BrS is definitively diagnosed when a type I ST-segment elevation is observed

    1. (a)

      either spontaneously or after intra-venous administration of a sodium channel blocking agent (ajmaline, flecainide, pilsicainde or procainamide)

    2. (b)

      in at least one right precordial lead (V1 and V2), which are placed in a standard or a superior position (up to the second intercostal space) [2, 65].

    Drug-induced conversion of type 3 to type 2 ST-segment elevation is considered inconclusive for a diagnosis of Brugada syndrome.

  6. 6.

    Correct answer: (d).

    Several conditions may mimic a BrS, including medical illness [152,153,154,155,156,157], mechanical compression of RVOT [158, 159], cardiomyopathies [160, 161], electrolyte imbalances, hyperkalaemia, hypercalcemia [162,163,164,165], hyperthermia and hypothermia [166, 167], thiamin deficiency, elevated insulin level [168]. Anti-allergic drugs are not included. A list of drugs able to induce a type 1 ECG and VF is available on the website www.brugadadrugs.org.

  7. 7.

    Correct answer: (d).

    ECG shows sinus rhythm at 52 bpm, normal PR (160 ms) and QRS duration (90 ms), with a normal QTc. Therefore, LQTS and SQTS should be excluded. The repolarization is normal, therefore there are no criteria for a Brugada Syndrome diagnosis, even though this cannot be excluded, as the diagnostic ECG pattern is not always present.

  8. 8.

    Correct answer: (a).

    As echocardiogram is normal, an exercise stress testing should be performed to better evaluate the correlation with heart rate. Indeed, the ECG is normal. The absence of arrhythmias during the night-time on the 12-lead 24-h Holter monitoring and the correlation of the symptoms with exercise and emotional stress should arise the suspicious of CPVT diagnosis [65, 188, 189, 195].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castelletti, S., Crotti, L. (2020). Specific Cardiovascular Diseases and Competitive Sports Participation: Channelopathies. In: Pressler, A., Niebauer, J. (eds) Textbook of Sports and Exercise Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-35374-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35374-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35373-5

  • Online ISBN: 978-3-030-35374-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics