Skip to main content

Immune Modulation and Macrophage Polarization in the Pathogenesis of Pancreatic Dysfunction and Obesity

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 19))

  • 1088 Accesses

Abstract

The prevalence of obesity and metabolic syndrome continue to increase by years and now obesity is a growing public health problem. World Health Organization (WHO) reports that more than 1.9 billion adults were overweight in 2016, 39% of them obese and 8.5–12.2% of adults aged 18 years and older had diabetes. Nutritional imbalance (over- or under-nutrition), lifestyles or environmental factors can affect the hemostasis of the body. Hormonal, inflammatory, oxidative and nutritional status determines the activation of cellular and systemic pathways in the body. Chronic disturbances of the nutritional status of the body especially obesity increases the prevalence of chronic non-communicable diseases (NCD) (WHO Diabetes [1]). Body weight and metabolism are determined by a complex orchestration of the function of several cells, organs and tissues. Underlying mechanisms of obesity and insulin resistance are still unknown. Immune cells within the metabolism related organs also likely contribute to systemic control of glucose, lipid. Increased production of local and systemic adipokines and cytokines, polarization of macrophages, T helper subtype changes could contribute to pathologies linking obesity to diabetes, both by decreasing insulin sensitivity, by compromising β-cell function and disturbing adipose tissue metabolism and distribution. Recent studies show that oxidative stress, systemic chronic inflammation or dysregulation of immune system contribute to development of NCD. Metabolic syndrome and diabetes have similar pathophysiological mechanisms with other NCD. For this reason, relevant interventions to modulate oxidative and inflammatory status of the body will make meaningful improvements in the mortality and morbidity associated with NCD. Chronic nutrition imbalance and obesity promote low-grade inflammation. “Metainflammation” is a term used for chronic inflammation of organs consists of the gastrointestinal system (including liver), muscle and adipose tissue. Macrophages are guardians of the tissues. They regulate immune responses, homeostasis in the different physiological and pathological conditions. Clarification of the underlying mechanisms of chronic inflammation will provide an explanation for mechanisms of obesity and the associated complications and will supply information for new therapeutic approaches. This noteworthy perception is allowing us to more assuredly define the role that macrophages involve in health and in obesity and how inflammatory mediators behave as signaling molecules in this pathway. Additionally, on a molecular level, we are beginning to figure out how such factors as nutritional, metabolic status, hormonal changes, lifestyle, genetic and epigenetic factors interrelate and terminate in different phenotypes and characteristics, and which interventions may modulate immune functions. Therefore, this chapter will review the metabolic regulation of plasticity of macrophages and role of inflammation and macrophage polarization in obesity, diabetes and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Diabetes

    Google Scholar 

  2. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566

    Article  CAS  PubMed  Google Scholar 

  3. Krausgruber T, Blazek K, Smallie T et al (2011) IRF5 promotes inflammatory macrophage polarization and T H 1-T H 17 responses. Nat Immunol 12:231

    Article  CAS  PubMed  Google Scholar 

  4. Chinetti-Gbaguidi G, Colin S, Staels B (2014) Macrophage subsets in atherosclerosis. Nat Rev Cardiol 12:10

    Article  PubMed  CAS  Google Scholar 

  5. Vinchi F, Muckenthaler MU, Da Silva MC et al (2014) Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol 5:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  7. Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262:153–166. https://doi.org/10.1111/imr.12218

    Article  CAS  PubMed  Google Scholar 

  8. Williams JW, Giannarelli C, Rahman A et al (2018) Macrophage biology, classification, and phenotype in cardiovascular disease: JACC macrophage in CVD series (part 1). J Am Coll Cardiol 72:2166–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yap J, Cabrera-Fuentes HA, Irei J et al (2019) Role of macrophages in cardioprotection. Int J Mol Sci 20:2474

    Article  CAS  PubMed Central  Google Scholar 

  10. Bi Y, Chen J, Hu F et al (2019) M2 macrophages as a potential target for antiatherosclerosis treatment. Neural Plast. https://doi.org/10.1155/2019/6724903

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sodhi K, Puri N, Favero G et al (2015) Fructose mediated non-alcoholic fatty liver is attenuated by HO-1-SIRT1 module in murine hepatocytes and mice fed a high fructose diet. PLoS ONE 10:e0128648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tu TH, Joe Y, Choi H-S, et al (2014) Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching. Mediators Inflamm

    Google Scholar 

  13. Schuch K, Wanko B, Ambroz K et al (2016) Osteopontin affects macrophage polarization promoting endocytic but not inflammatory properties. Obesity 24:1489–1498

    Article  CAS  PubMed  Google Scholar 

  14. Braune J, Weyer U, Hobusch C et al (2017) IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol 198:2927–2934. https://doi.org/10.4049/jimmunol.1600476

    Article  CAS  PubMed  Google Scholar 

  15. Boutens L, Hooiveld GJ, Dhingra S et al (2018) Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 61:942–953. https://doi.org/10.1007/s00125-017-4526-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujisaka S, Usui I, Ikutani M et al (2013) Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 56:1403–1412

    Article  CAS  PubMed  Google Scholar 

  17. Liu P-S, Wang H, Li X et al (2017) α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985

    Article  CAS  PubMed  Google Scholar 

  18. Sadiku P, Walmsley SR (2019) Hypoxia and the regulation of myeloid cell metabolic imprinting: consequences for the inflammatory response. EMBO Rep 20

    Google Scholar 

  19. Takeda N, O’Dea EL, Doedens A et al (2010) Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev 24:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho SH, Raybuck AL, Blagih J et al (2019) Hypoxia-inducible factors in CD4+ T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. Proc Natl Acad Sci 116:8975–8984. https://doi.org/10.1073/pnas.1811702116

    Article  CAS  Google Scholar 

  21. Choe SS, Shin KC, Ka S et al (2014) Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance in obesity. Diabetes 63:3359–3371. https://doi.org/10.2337/db13-1965

    Article  CAS  PubMed  Google Scholar 

  22. Guo Y, Song Z, Zhou M et al (2017) Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway. Oncotarget 8:53276

    PubMed  PubMed Central  Google Scholar 

  23. Ren W, Xia Y, Chen S et al (2019) Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes. Adv Nutr 10:321–330

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calderon B, Carrero JA, Ferris ST et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212:1497–1512. https://doi.org/10.1084/jem.20150496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferris ST, Carrero JA, Mohan JF et al (2014) A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41:657–669. https://doi.org/10.1016/j.immuni.2014.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carrero JA, Ferris ST, Unanue ER (2016) Macrophages and dendritic cells in islets of Langerhans in diabetic autoimmunity: a lesson on cell interactions in a mini-organ. Curr Opin Immunol 43:54–59. https://doi.org/10.1016/j.coi.2016.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woodland DC, Liu W, Leong J et al (2016) Short-term high-fat feeding induces islet macrophage infiltration and β-cell replication independently of insulin resistance in mice. Am J Physiol Metab 311:E763–E771

    Google Scholar 

  28. Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP et al (2016) Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett 176:81–89

    Article  CAS  PubMed  Google Scholar 

  29. Jourdan T, Szanda G, Cinar R et al (2017) Developmental role of macrophage cannabinoid-1 receptor signaling in type 2 diabetes. Diabetes 66:994–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moganti K, Li F, Schmuttermaier C et al (2017) Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology 222:952–959

    Article  CAS  PubMed  Google Scholar 

  31. Cucak H, Grunnet LG, Rosendahl A (2014) Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol 95:149–160. https://doi.org/10.1189/jlb.0213075

    Article  CAS  PubMed  Google Scholar 

  32. Donath MY (2016) Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia 59:679–682. https://doi.org/10.1007/s00125-016-3873-z

    Article  CAS  PubMed  Google Scholar 

  33. Imai Y, Dobrian AD, Morris MA et al (2016) Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 59:673–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jing Y, Wu F, Li D et al (2018) Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 461:256–264

    Article  CAS  PubMed  Google Scholar 

  35. Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8:709

    Article  CAS  PubMed  Google Scholar 

  36. Chung K-J, Nati M, Chavakis T, Chatzigeorgiou A (2018) Innate immune cells in the adipose tissue. Rev Endocr Metab Disord 19:283–292. https://doi.org/10.1007/s11154-018-9451-6

    Article  CAS  PubMed  Google Scholar 

  37. Fonseca-Alaniz MH, Takada J, Alonso-Vale MIC, Lima FB (2006) The adipose tissue as a regulatory center of the metabolism. Arq Bras Endocrinol Metabol 50:216–29

    Article  Google Scholar 

  38. Shibata M-A, Harada-Shiba M, Shibata E et al (2019) Crude α-mangostin suppresses the development of atherosclerotic lesions in apoe-deficient mice by a possible M2 macrophage-mediated mechanism. Int J Mol Sci 20:1722

    Article  PubMed Central  Google Scholar 

  39. Nguyen KD, Qiu Y, Cui X et al (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiu Y, Nguyen KD, Odegaard JI et al (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer K, Ruiz HH, Jhun K et al (2017) Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med 23:623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rajasekaran M, Sul O, Choi E et al (2019) MCP-1 deficiency enhances browning of adipose tissue via increased M2 polarization. J Endocrinol 1

    Google Scholar 

  43. Lv Y, Zhang S-Y, Liang X et al (2016) Adrenomedullin 2 enhances beiging in white adipose tissue directly in an adipocyte-autonomous manner and indirectly through activation of M2 macrophages. J Biol Chem 291:23390–23402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrett R, Narasimhulu CA, Parthasarathy S (2018) Adrenergic hormones induce extrapituitary prolactin gene expression in leukocytes-potential implications in obesity. Sci Rep 8:1936. https://doi.org/10.1038/s41598-018-20378-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu H, Moon J, Chung JH et al (2015) Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochem Biophys Res Commun 464:840–847

    Article  CAS  PubMed  Google Scholar 

  46. Jais A, Einwallner E, Sharif O et al (2014) Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158:25–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kralova Lesna I, Petras M, Cejkova S et al (2018) Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur J Prev Cardiol 25:328–334

    Article  PubMed  Google Scholar 

  48. Tateya S, Rizzo NO, Handa P et al (2011) Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes 60:2792–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roberts LD (2015) Does inorganic nitrate say NO to obesity by browning white adipose tissue? Adipocyte 4:311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberts LD, Ashmore T, Kotwica AO et al (2015) Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes 64:471–484

    Article  CAS  PubMed  Google Scholar 

  51. Varzandi T, Abdollahifar MA, Rohani SAH et al (2018) Effect of long-term nitrite administration on browning of white adipose tissue in type 2 diabetic rats: a stereological study. Life Sci 207:219–226

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Shi G-P (2012) Mast cells and metabolic syndrome. Biochim Biophys Acta (BBA)-Molecular Basis Dis 1822:14–20

    Article  CAS  Google Scholar 

  53. Varricchi G, Galdiero MR, Loffredo S et al (2017) Are mast cells MASTers in cancer? Front Immunol 8:424

    PubMed  PubMed Central  Google Scholar 

  54. Liu J, Divoux A, Sun J et al (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15:940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Shi G (2011) Mast cell stabilization: novel medication for obesity and diabetes. Diabetes Metab Res Rev 27:919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalkman H, Feuerbach D (2017) Microglia M2A polarization as potential link between food allergy and autism spectrum disorders. Pharmaceuticals 10:95

    Article  PubMed Central  CAS  Google Scholar 

  57. Castellano-Castillo D, Moreno-Indias I, Fernandez-Garcia JC et al (2018) Complement factor C3 methylation and mRNA expression is associated to BMI and insulin resistance in obesity. Genes (Basel) 9:410. https://doi.org/10.3390/genes9080410

    Article  CAS  Google Scholar 

  58. Li Y, Huang B, Jiang X et al (2018) Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front Immunol 9:1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kremlitzka M, Nowacka A, Mohlin FC et al (2019) Interaction of serum-derived and internalized C3 with DNA in human B cells–a potential involvement in regulation of gene transcription. Front Immunol 10:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng J, Jiang Z, Chen D et al (2019) Pathological significance of urinary complement activation in diabetic nephropathy: a full view from the development of the disease. J Diabetes Investig 10:738–744

    Article  PubMed  Google Scholar 

  61. Phieler J, Chung K-J, Chatzigeorgiou A et al (2013) The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol 191:4367–4374

    Article  CAS  PubMed  Google Scholar 

  62. Poursharifi P, Lapointe M, Fisette A et al (2014) C5aR and C5L2 act in concert to balance immunometabolism in adipose tissue. Mol Cell Endocrinol 382:325–333

    Article  CAS  PubMed  Google Scholar 

  63. Ruan C-C, Ge Q, Li Y et al (2015) Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arterioscler Thromb Vasc Biol 35:598–606

    Article  CAS  PubMed  Google Scholar 

  64. Piao C, Zhang W-M, Li T-T et al (2018) Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer. Exp Cell Res 366:127–138

    Article  CAS  PubMed  Google Scholar 

  65. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease. Clin J Am Soc Nephrol 12:2032–2045. https://doi.org/10.2215/CJN.11491116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tesch GH (2017) Diabetic nephropathy–is this an immune disorder? Clin Sci 131:2183–2199

    Article  CAS  Google Scholar 

  67. Akdas S, Turan B, Aribal Ayral P, Yazihan N (2019) The relationship between metabolic syndrome development and tissue trace elements status and inflammatory markers. Unpublished data (Abstract was sent to ISZB 2019 congress)

    Google Scholar 

  68. Alemdar M, Akdas S, Biriken D, Inanc I, Billur D, Turan B, Aribal Ayral P, Yazihan N (2019) Evaluation of the effect of tissue zinc-copper level and inflammatory process in elderly and metabolic syndrome developed rats. Unpublished data (Abstract was sent to ISZB 2019 congress.)

    Google Scholar 

  69. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163. https://doi.org/10.1146/annurev.immunol.021908.132629

    Article  CAS  PubMed  Google Scholar 

  70. Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26:1175–1186. https://doi.org/10.1111/j.1478-3231.2006.01342.x

    Article  CAS  PubMed  Google Scholar 

  71. Moore SM, Holt VV, Malpass LR et al (2015) Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages. Mol Immunol 67:265–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kazankov K, Jørgensen SMD, Thomsen KL et al (2018) The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 1

    Google Scholar 

  73. Weng S-Y, Wang X, Vijayan S et al (2018) IL-4 receptor alpha signaling through macrophages differentially regulates liver fibrosis progression and reversal. EBioMedicine 29:92–103

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fukushima H, Yamashina S, Arakawa A et al (2018) Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease. Hepatol Res 48:757–767

    Article  CAS  PubMed  Google Scholar 

  75. Patouraux S, Rousseau D, Bonnafous S et al (2017) CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 67:328–338

    Article  CAS  PubMed  Google Scholar 

  76. Krenkel O, Puengel T, Govaere O et al (2018) Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67:1270–1283

    Article  CAS  PubMed  Google Scholar 

  77. Yang F, Wang S, Liu Y et al (2018) IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells. Free Radic Biol Med 124:395–407

    Article  CAS  PubMed  Google Scholar 

  78. Kitade H, Chen G, Ni Y, Ota T (2017) Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients 9:387

    Article  PubMed Central  CAS  Google Scholar 

  79. Zhang X, Fan L, Wu J et al (2019) Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol 71:163–174

    Article  CAS  PubMed  Google Scholar 

  80. Handa P, Thomas S, Morgan-Stevenson V et al (2019) Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J Leukoc Biol 105:1015–1026

    Article  CAS  PubMed  Google Scholar 

  81. Pan M-H, Chen J-W, Kong Z-L et al (2018) Attenuation by tetrahydrocurcumin of adiposity and hepatic steatosis in mice with high-fat-diet-induced obesity. J Agric Food Chem 66:12685–12695

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Yazihan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yazihan, N., Akdas, S. (2020). Immune Modulation and Macrophage Polarization in the Pathogenesis of Pancreatic Dysfunction and Obesity. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_8

Download citation

Publish with us

Policies and ethics