Skip to main content

Understanding the Initiation and Progression of Diet-Induced Obesity and Associated Pathophysiology: Lessons Learned from a Rat Model

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 19))

  • 1058 Accesses

Abstract

In human populations, the development and progression of obesity and its consequences on host systems is complex. Risk for obesity can reside in an individual’s genome, in epigenetic modifications, and in dietary and activity level variables. In addition to host system factors, the diet can also influence the gut microbiota leading to alterations to the host and such alterations can contribute to pathophysiological sequelae in the host. In order to better understand the impact of diet on obesity development, our group has studied the consequences of a high-fat/high-sucrose (HFS) diet on physiological systems of Sprague-Dawley male rats over short term and long term exposure to the diet. Medium (12 weeks) to long term (28 weeks) exposure to the diet leads to development of knee, shoulder, and to a lesser degree, hip damage, alterations to some skeletal muscles, development of insulin resistance and type 2 diabetes, development of features of systemic metabolic syndrome, fatty liver disease, and alterations to the vitreous humor of the eye. Very short time exposure (days to 4 weeks) leads to early, but fluctuating changes to serum cytokine profiles, changes to some skeletal muscles, and the onset of knee joint damage. Alterations to the gut microbiota are evident following medium to longer term exposure to the diet, but not during the shorter time frame. Exposure of rats on the HFS diet to either a modest exercise protocol or an oligofructose prebiotic initiated at the same time as the HFS diet is initiated, completely prevented development of joint damage at 12 weeks. Thus, the development of obesity, and at least some of its pathophysiological sequelae in this model, are modifiable by low cost, minimally invasive interventions. Such findings provide an opportunity to determine whether some of the consequences of exposure to the HFS diet develop in parallel or serially, and to identify potential points in the process that are reversible. Current studies are focused on addressing such questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics [Internet]. 2015 Jul [cited 2019 Jan 4] 33(7):673–689. http://www.ncbi.nlm.nih.gov/pubmed/25471927

  2. Kumar S, Kelly AS (2017) Review of childhood obesity. Mayo Clin Proc [Internet]. 2017 Feb [cited 2019 Jan 13] 92(2):251–265. http://www.ncbi.nlm.nih.gov/pubmed/28065514

    Article  Google Scholar 

  3. Xia Q, Grant SFA (2013) The genetics of human obesity. Ann N Y Acad Sci [Internet]. 2013 Apr [cited 2019 Jan 13] 1281(1):178–190. http://www.ncbi.nlm.nih.gov/pubmed/23360386

    Article  CAS  Google Scholar 

  4. Rosen ED, Kaestner KH, Natarajan R, Patti M-E, Sallari R, Sander M et al (2018) Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes [Internet]. 2018 Oct 1 [cited 2019 Jan 13] 67(10):1923–1931. http://www.ncbi.nlm.nih.gov/pubmed/30237160

  5. Lamberts SWJ, van den Beld AW, van der Lely A-J (1997) The endocrinology of aging. Science (80–). 278:419–423

    Google Scholar 

  6. Westerterp KR (1999) Assessment of physical activity level in relation to obesity: current evidence and research issues. Med Sci Sports Exerc [Internet]. 1999 Nov [cited 2019 Jan 13] 31(11 Suppl):S522–525. http://www.ncbi.nlm.nih.gov/pubmed/10593522

  7. Hoos MB, Gerver WJM, Kester AD, Westerterp KR (2003) Physical activity levels in children and adolescents. Int J Obes [Internet]. 2003 May 17 [cited 2019 Jan 13] 27(5):605–609. http://www.nature.com/articles/0802246

    Article  CAS  Google Scholar 

  8. Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC et al (2018) Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol 9

    Google Scholar 

  9. Johnson AR, Makowski L (2015) Nutrition and metabolic correlates of obesity and inflammation: clinical considerations. J Nutr [Internet]. 2015 May 1 [cited 2019 Jan 13] 145(5):1131S–1136S. https://academic.oup.com/jn/article/145/5/1131S/4589947

  10. McPherson R (2007) Genetic contributors to obesity. Can J Cardiol [Internet]. 2007 Aug [cited 2019 Jan 13] 23(Suppl A):23A–27A. http://www.ncbi.nlm.nih.gov/pubmed/17668084

    Article  CAS  Google Scholar 

  11. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet [Internet]. 2011 Aug 27 [cited 2014 Jan 9] 378(9793):804–814. http://www.sciencedirect.com/science/article/pii/S0140673611608131

    Article  Google Scholar 

  12. Roberto CA, Swinburn B, Hawkes C, Huang TT-K, Costa SA, Ashe M et al (2015) Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet 385(9985):2400–2409

    Article  Google Scholar 

  13. Castracane VD, Henson MC (2006) The obese (ob/ob) mouse and the discovery of leptin. In: Leptin [Internet]. Springer US, Boston, MA [cited 2019 Jan 16], pp 1–9. http://link.springer.com/10.1007/978-0-387-31416-7_1

  14. Björnholm M, Münzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW et al (2007) Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest [Internet]. 2007 May [cited 2019 Jan 16] 117(5):1354–1360. http://www.ncbi.nlm.nih.gov/pubmed/17415414

    Article  Google Scholar 

  15. Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature [Internet]. 2015 Jan 15 [cited 2019 Jan 16] 517(7534):302–310. http://www.nature.com/articles/nature14190

  16. Schemmel R, Mickelsen O, Tolgay Z (1969) Dietary obesity in rats: influence of diet, weight, age, and sex on body composition. Am J Physiol [Internet]. 1969 Feb [cited 2013 Dec 14] 216(2):373–379. http://www.ncbi.nlm.nih.gov/pubmed/5766993

    Article  CAS  Google Scholar 

  17. Jung AP, Luthin DR (2010) Wheel access does not attenuate weight gain in mice fed high-fat or high-CHO diets. Med Sci Sports Exerc [Internet]. 2010 Feb [cited 2019 Jan 16] 42(2):355–360. http://www.ncbi.nlm.nih.gov/pubmed/19927024

    Article  CAS  Google Scholar 

  18. Lutz TA, Woods SC (2012) Overview of animal models of obesity. Curr Protoc Pharmacol [Internet]. 2012 Sep [cited 2019 Jan 16]; Chapter 5: Unit 5.61. http://www.ncbi.nlm.nih.gov/pubmed/22948848

    Article  Google Scholar 

  19. Vogel H, Kraemer M, Rabasa C, Askevik K, Adan RAH, Dickson SL (2017) Genetic predisposition to obesity affects behavioural traits including food reward and anxiety-like behaviour in rats. Behav Brain Res [Internet]. 2017 Jun 15 [cited 2019 Jan 16] 328:95–104. https://www.sciencedirect.com/science/article/pii/S0166432816311779

    Article  Google Scholar 

  20. Seki Y, Williams L, Vuguin PM, Charron MJ (2012) Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology [Internet]. 2012 Mar [cited 2019 Jan 16] 153(3):1031–1038. http://www.ncbi.nlm.nih.gov/pubmed/22253432

  21. World Health Organization (2015) Interim report of the commission on ending childhood obesity [Internet]. 2015. http://www.who.int/end-childhood-obesity/commission-ending-childhood-obesity-interim-report.pdf?ua=1

  22. Oberbach A, Schlichting N, Heinrich M, Lehmann S, Till H, Mohr FW et al (2014) Weight loss surgery improves the metabolic status in an obese rat model but does not affect bladder fibrosis associated with high fat diet feeding. Int J Obes [Internet]. 2014 Aug 29 [cited 2019 Jan 16] 38(8):1061–1067. http://www.ncbi.nlm.nih.gov/pubmed/24166068

    Article  Google Scholar 

  23. Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA (2014) Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity (Silver Spring) [Internet]. 2014 Mar [cited 2014 Oct 20] 22(3):763–771. http://doi.wiley.com/10.1002/oby.20632

  24. Paul HA, Collins KH, Nicolucci AC, Urbanski SJ, Hart DA, Vogel HJ et al (2019) Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats. FASEB J [Internet]. 2019 Jan 10 [cited 2019 Jan 14] fj.201801551R. https://www.fasebj.org/doi/10.1096/fj.201801551R

  25. Lee JR, Tapia MA, Nelson JR, Moore JM, Gereau GB, Childs TE et al (2019) Sex dependent effects of physical activity on diet preference in rats selectively bred for high or low levels of voluntary wheel running. Behav Brain Res [Internet]. 2019 Feb 1 [cited 2019 Jan 16] 359:95–103. http://www.ncbi.nlm.nih.gov/pubmed/30392852

    Article  Google Scholar 

  26. Chen C-N (Joyce), Liao Y-H, Lin S-Y, Yu J-X, Li Z-J, Lin Y-C et al (2017) Diet-induced obesity accelerates blood lactate accumulation of rats in response to incremental exercise to maximum. Am J Physiol Integr Comp Physiol [Internet]. 2017 Nov 1 [cited 2019 Jan 16] 313(5):R601–607. http://www.ncbi.nlm.nih.gov/pubmed/28855180

  27. Robinson SW, Dinulescu DM, Cone RD (2000) Genetic models of obesity and energy balance in the mouse. Annu Rev Genet [Internet]. 2000 Dec [cited 2019 Jan 16] 34(1):687–745. http://www.ncbi.nlm.nih.gov/pubmed/11092843

    Article  CAS  Google Scholar 

  28. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev [Internet]. 2010 Dec [cited 2013 Feb 20] 23(2):270–299. http://www.ncbi.nlm.nih.gov/pubmed/20977819

    Article  CAS  Google Scholar 

  29. McLellan MA, Rosenthal NA, Pinto AR (2017) Cre-lox P-mediated recombination: general principles and experimental considerations. In: Current protocols in mouse biology [Internet]. Wiley, Hoboken, NJ, USA [cited 2019 Jan 19], pp 1–12. http://www.ncbi.nlm.nih.gov/pubmed/28252198

    Article  Google Scholar 

  30. Lillycrop KA, Burdge GC (2011) Epigenetic changes in early life and future risk of obesity. Int J Obes [Internet]. 2011 Jan 15 [cited 2019 Jan 16] 35(1):72–83. http://www.nature.com/articles/ijo2010122

    Article  Google Scholar 

  31. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E et al (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science [Internet]. 2014 Aug 15 [cited 2019 Jan 16] 345(6198):1255903. http://www.ncbi.nlm.nih.gov/pubmed/25011554

    Article  Google Scholar 

  32. Youngson NA, Morris MJ (2013) What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci [Internet]. 2013 Jan 5 [cited 2019 Jan 16] 368(1609):20110337. http://www.ncbi.nlm.nih.gov/pubmed/23166398

    Article  Google Scholar 

  33. Mulligan CM, Friedman JE (2017) Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol 235(1):R1–12

    Article  CAS  Google Scholar 

  34. Collins KH, Reimer RA, Seerattan RA, Leonard TR, Herzog W (2015) Using diet-induced obesity to understand a metabolic subtype of osteoarthritis in rats. Osteoarthr Cartil 23(6)

    Article  CAS  Google Scholar 

  35. Collins KH, Hart DA, Reimer RA, Seerattan RA, Herzog W (2016) Response to diet-induced obesity produces time-dependent induction and progression of metabolic osteoarthritis in rat knees. J Orthop Res 34(6)

    Article  Google Scholar 

  36. Collins KH, Paul HA, Reimer RA, Seerattan R-A, Hart DA, Herzog W (2015) Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthr Cartil 23(11):1989–1998

    Article  CAS  Google Scholar 

  37. Collins KH, Hart DA, Reimer RA, Seerattan RA, Herzog W (2016) Response to diet-induced obesity produces time-dependent induction and progression of metabolic osteoarthritis in rat knees. J Orthop Res 34(6):1010–1018

    Article  CAS  Google Scholar 

  38. Evans JD (1996) Straightforward statistics for the behavioral sciences [Internet]. Brooks/Cole Pub. Co., Pacific Grove; 1996 [cited 2019 Feb 7], 600 pp. https://www.worldcat.org/title/straightforward-statistics-for-the-behavioral-sciences/oclc/32465263

  39. Collins KH, Hart DA, Seerattan RA, Reimer RA, Herzog W (2017) High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model. Submitt to Bone Jt Res; Manuscript ID: BJR-2017-0201

    Google Scholar 

  40. Collins KH, Herzog W, Reimer RA, Reno CR, Heard BJ, Hart DA (2017) Diet-induced obesity leads to pro-inflammatory alterations to the vitreous humour of the eye in a rat model. Inflamm Res

    Google Scholar 

  41. Niederkorn JY (2012) Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front Immunol [Internet]. 2012 Jun 13 [cited 2017 Jun 15] 3:148. http://journal.frontiersin.org/article/10.3389/fimmu.2012.00148/abstract

  42. Collins KH, Hart D, Smith I, Issler A, Reimer R, Seerattan R et al (2017) Acute and chronic changes in rat soleus muscle after high-fat high-sucrose diet. Physiol Rep 5(10):e13270

    Article  Google Scholar 

  43. Collins KH, Hart DA, Reimer RA, Seerattan RA, Banker CW, Sibole SC et al (2016) High-fat high-sucrose diet leads to dynamic structural and inflammatory alterations in the rat vastus lateralis muscle. J Orthop Res [Internet]. 2016 Mar 17 [cited 2016 Mar 21] 34(12):2069–2078. http://www.ncbi.nlm.nih.gov/pubmed/26990324

    Article  CAS  Google Scholar 

  44. Collins KH, Paul HA, Reimer RA, Seerattan RA, Hart DA, Herzog W (2015) Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: Studies in a rat model. Osteoarthr Cartil 23(11)

    Article  CAS  Google Scholar 

  45. Collins KH, Paul HA, Hart DA, Reimer RA, Smith IC, Rios JL et al (2016) A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep 6

    Google Scholar 

  46. Collins KH, Paul HA, Hart DA, Reimer RA, Smith IC, Rios JL et al (2016) A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep [Internet]. 2016 Nov 17 [cited 2016 Nov 17] 6:37278. http://doi.org/10.1038/srep37278

  47. Ciapaite J, van den Berg SA, Houten SM, Nicolay K, van Dijk KW, Jeneson JA (2015) Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast-versus slow-twitch muscle contractile function in C57BL/6J mice. J Nutr Biochem [Internet]. 2015 Feb [cited 2015 May 11] 26(2):155–164. http://www.sciencedirect.com/science/article/pii/S0955286314002174

    Article  CAS  Google Scholar 

  48. Kraegen EW, James DE, Storlien LH, Burleigh KM, Chisholm DJ (1986) In vivo insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by euglycaemic clamp plus deoxyglucose administration. Diabetologia [Internet]. 1986 Mar [cited 2015 Aug 3] 29(3):192–198. http://www.ncbi.nlm.nih.gov/pubmed/3516775

    Article  CAS  Google Scholar 

  49. Paul HA, Collins KH, Bomhof MR, Vogel HJ, Reimer RA (2018) Potential impact of metabolic and gut microbial response to pregnancy and lactation in lean and diet-induced obese rats on offspring obesity risk. Mol Nutr Food Res

    Google Scholar 

  50. Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA (2017) Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology [Internet]. 2017 Sep [cited 2017 Oct 22] 153(3):711–722. http://www.ncbi.nlm.nih.gov/pubmed/28596023

    Article  Google Scholar 

  51. Parnell JA, Reimer RA (2012) Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr [Internet]. 2012 Feb [cited 2014 Oct 6] 107(4):601–613. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3827017&tool=pmcentrez&rendertype=abstract

  52. Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett [Internet]. 2016 Jun 20 [cited 2019 Jan 16] 625:56–63. https://www.sciencedirect.com/science/article/pii/S0304394016300775

  53. Rios JL, Bomhof MR, Reimer RA, Hart DA, Collins KH, Herzog W (2019) Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity. Sci Rep 9:3893. https://doi.org/1038/s41598-019-40601-x

  54. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J et al (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. Federici M, editor. PLoS One [Internet]. 2014 Mar 26 [cited 2019 Jan 16] 9(3):e92193. http://www.ncbi.nlm.nih.gov/pubmed/24670791

  55. Varlamov O, Bethea CL, Roberts CT, Jr (2014) Sex-specific differences in lipid and glucose metabolism. Front Endocrinol (Lausanne) [Internet]. 2014 [cited 2019 Jan 16] 5:241. http://www.ncbi.nlm.nih.gov/pubmed/25646091

  56. Collins KH, MacDonald GZ, Hart DA, Seerattan RA, Rios JL, Reimer RA et al (2019) Adult versus weanling exposure to a high fat high sucrose diet leads to differences in development of joint damage: potential impact of timing on establishment of metabolic and functional set points. J Sport Heal Sci (in press)

    Google Scholar 

Download references

Acknowledgements

The authors thank Ruth Seerattan for excellent technical support for the studies. The authors acknowledge the financial support from the AHS Strategic Clinical Network Program (DAH), CIHR (WH & RAR), the CAPES fund of Brazil (JLR), and NIH T32 NIDDK, Alberta Innovates Health Solutions, Canadian Institutes of Health Research, Killam Trusts (KHC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hart .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hart, D.A., Herzog, W., Rios, J.L., Reimer, R.A., Collins, K.H. (2020). Understanding the Initiation and Progression of Diet-Induced Obesity and Associated Pathophysiology: Lessons Learned from a Rat Model. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_7

Download citation

Publish with us

Policies and ethics