Skip to main content

Extracellular Vesicles and Circulating miRNAs—Exercise-Induced Mitigation of Obesity and Associated Metabolic Diseases

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 19))

  • 1165 Accesses

Abstract

Obesity is a progressive chronic disease that is defined by increased adiposity and dysregulated blood lipid and glucose profiles. This, coupled with insulin resistance and hypertension, leads to the development of the metabolic syndrome in obese patients. Furthermore, obesity correlates strongly with an elevated risk and progression of a number of different cancers. Endurance exercise is a gold standard method for rescuing obesity and the associated metabolic dysfunction. Physical activity stimulates fat loss, evokes metabolic adaptations and induces browning of white adipose tissue. The ‘brown’ fat depots are thermogenically active, thereby facilitating energy expenditure and weight loss. New evidence suggests that the systemic effects of exercise are mediated by extracellular vesicles (EVs). These are released from all cell types, and contain canonical myokines that are shed from skeletal muscle, as well as a plethora of other molecular cargo including miRNA, mRNA, DNA, metabolites and proteins. Pro-metabolic myokines include proteins, as well as miRNAs that are linked to rescuing obesity and associated metabolic syndrome. Circulating miRNAs have been shown to be useful biomarkers of pathological conditions including obesity, cancer and the metabolic syndrome. EVs and their enclosed molecular cargo offers a viable therapeutic target for future studies designed to mimic exercise and recapitulate the beneficial effects of exercise in obese subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12(9):504–517

    Article  CAS  PubMed  Google Scholar 

  2. Diabetes Canada Clinical Practice Guidelines Expert C, Houlden RL (2018) Introduction. Can J Diab 42(Suppl 1):S1–S5

    Google Scholar 

  3. Avery L, Flynn D, van Wersch A, Sniehotta FF, Trenell MI (2012) Changing physical activity behavior in type 2 diabetes: a systematic review and meta-analysis of behavioral interventions. Diabe Care 35(12):2681–2689

    Article  Google Scholar 

  4. Flegal KM, Kit BK, Orpana H, Graubard BI (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309(1):71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, Bouret S, Varma V, Hastings KL, Schug TT et al (2018) Metabolic syndrome and associated diseases: from the bench to the clinic. Toxicol Sci 162(1):36–42

    Article  CAS  PubMed  Google Scholar 

  6. Chung WK (2012) An overview of mongenic and syndromic obesities in humans. Pediatr Blood Cancer 58(1):122–128

    Article  PubMed  Google Scholar 

  7. Han TS, Lean ME (2016) A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis 5:2048004016633371

    PubMed  PubMed Central  Google Scholar 

  8. de Mello AH, Costa AB, Engel JDG, Rezin GT (2018) Mitochondrial dysfunction in obesity. Life Sci 192:26–32

    Article  PubMed  CAS  Google Scholar 

  9. Niemann B, Chen Y, Teschner M, Li L, Silber RE, Rohrbach S (2011) Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol 57(5):577–585

    Article  CAS  PubMed  Google Scholar 

  10. Aballay LR, Eynard AR, Diaz Mdel P, Navarro A, Munoz SE (2013) Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutr Rev 71(3):168–179

    Article  PubMed  Google Scholar 

  11. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lumeng CN (2013) Innate immune activation in obesity. Mol Aspects Med 34(1):12–29

    Article  CAS  PubMed  Google Scholar 

  13. Beberashvili I, Azar A, Abu Hamad R, Sinuani I, Feldman L, Maliar A, Stav K, Efrati S (2019) Abdominal obesity in normal weight versus overweight and obese hemodialysis patients: associations with nutrition, inflammation, muscle strength, and quality of life. Nutrition 59:7–13

    Article  PubMed  Google Scholar 

  14. Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, Khor VK, Ahima RS, Grinspoon SK (2011) TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab 96(1):E146–E150

    Article  CAS  PubMed  Google Scholar 

  15. Committee CCSA (2018) Canadian cancer statistics. Canadian Cancer Society

    Google Scholar 

  16. de Oliveira C, Weir S, Rangrej J, Krahn MD, Mittmann N, Hoch JS, Chan KKW, Peacock S (2018) The economic burden of cancer care in Canada: a population-based cost study. CMAJ Open 6(1):E1–E10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stone TW, McPherson M, Gail Darlington L (2018) Obesity and cancer: existing and new hypotheses for a causal connection. EBioMedicine 30:14–28

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allott EH, Hursting SD (2015) Obesity and cancer: mechanistic insights from transdisciplinary studies. Endocr Relat Cancer 22(6):R365–R386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerard C, Brown KA (2018) Obesity and breast cancer—role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 466:15–30

    Article  CAS  PubMed  Google Scholar 

  20. Cohen DH, LeRoith D (2012) Obesity, type 2 diabetes, and cancer: the insulin and IGF connection. Endocr Relat Cancer 19(5):F27–F45

    Article  CAS  PubMed  Google Scholar 

  21. Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, Boeing H, Pischon T, Panico S, Agnoli C et al (2010) Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer 126(7):1702–1715

    CAS  PubMed  Google Scholar 

  22. Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M, Takahashi H, Nakajima N, Wada K, Takeda K, Nakagama H et al (2011) Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 60(10):1363–1371

    Article  CAS  PubMed  Google Scholar 

  23. Cleary MP, Grossmann ME (2009) Minireview: Obesity and breast cancer: the estrogen connection. Endocrinology 150(6):2537–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang SH, Luo S, Thomas TS, O’Brian KK, Colditz GA, Carlsson NP, Carson KR (2017) Obesity and the transformation of monoclonal gammopathy of undetermined significance to multiple myeloma: a population-based cohort study. J Natl Cancer Inst 109(5)

    Article  PubMed Central  Google Scholar 

  25. Berger NA (2018) Young adult cancer: influence of the obesity pandemic. Obesity (Silver Spring) 26(4):641–650

    Article  Google Scholar 

  26. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2(2):1143–1211

    PubMed  PubMed Central  Google Scholar 

  28. Reiner M, Niermann C, Jekauc D, Woll A (2013) Long-term health benefits of physical activity–a systematic review of longitudinal studies. BMC Public Health 13:813

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gomes da Silva S, Simoes PS, Mortara RA, Scorza FA, Cavalheiro EA, da Graca Naffah-Mazzacoratti M, Arida RM (2013) Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflamm 10:61

    Google Scholar 

  30. Littlefield AM, Setti SE, Priester C, Kohman RA (2015) Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflamm 12:138

    Article  CAS  Google Scholar 

  31. Wu CW, Chang YT, Yu L, Chen HI, Jen CJ, Wu SY, Lo CP, Kuo YM (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol (1985) 105(5):1585–1594

    Article  PubMed  Google Scholar 

  32. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A et al (2007) High impact running improves learning. Neurobiol Learn Mem 87(4):597–609

    Article  PubMed  Google Scholar 

  33. Ang ET, Tai YK, Lo SQ, Seet R, Soong TW (2010) Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Front Aging Neurosci 2

    Google Scholar 

  34. Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14(5):469–486

    Article  CAS  PubMed  Google Scholar 

  35. Rolland Y, Pillard F, Klapouszczak A, Reynish E, Thomas D, Andrieu S, Riviere D, Vellas B (2007) Exercise program for nursing home residents with Alzheimer’s disease: a 1-year randomized, controlled trial. J Am Geriatr Soc 55(2):158–165

    Article  PubMed  Google Scholar 

  36. Bloomer RJ, Schilling BK, Karlage RE, Ledoux MS, Pfeiffer RF, Callegari J (2008) Effect of resistance training on blood oxidative stress in Parkinson disease. Med Sci Sports Exerc 40(8):1385–1389

    Article  CAS  PubMed  Google Scholar 

  37. Schalow G, Paasuke M, Jaigma P (2005) Integrative re-organization mechanism for reducing tremor in Parkinson’s disease patients. Electromyogr Clin Neurophysiol 45(7–8):407–415

    CAS  PubMed  Google Scholar 

  38. Falvo MJ, Schilling BK, Earhart GM (2008) Parkinson’s disease and resistive exercise: rationale, review, and recommendations. Mov Disord 23(1):1–11

    Article  PubMed  Google Scholar 

  39. Ljubicic V, Joseph AM, Adhihetty PJ, Huang JH, Saleem A, Uguccioni G, Hood DA (2009) Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. Aging (Albany NY) 1(9):818–830

    Article  CAS  PubMed Central  Google Scholar 

  40. Clark-Matott J, Saleem A, Dai Y, Shurubor Y, Ma X, Safdar A, Beal MF, Tarnopolsky M, Simon DK (2015) Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain. Neurobiol Aging 36(11):2972–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Safdar A, Annis S, Kraytsberg Y, Laverack C, Saleem A, Popadin K, Woods DC, Tilly JL, Khrapko K (2016) Amelioration of premature aging in mtDNA mutator mouse by exercise: the interplay of oxidative stress, PGC-1alpha, p53, and DNA damage. A hypothesis. Curr Opin Genet Dev 38:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, Thompson JE, Melov S, Mocellin NJ, Kujoth GC et al (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 108(10):4135–4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Safdar A, Khrapko K, Flynn JM, Saleem A, De Lisio M, Johnston AP, Kratysberg Y, Samjoo IA, Kitaoka Y, Ogborn DI et al (2016) Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice. Skelet Muscle 6:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reimers CD, Knapp G, Reimers AK (2009) Exercise as stroke prophylaxis. Dtsch Arztebl Int 106(44):715–721

    PubMed  PubMed Central  Google Scholar 

  46. Vega RB, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 25(5):1012–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nystoriak MA, Bhatnagar A (2018) Cardiovascular effects and benefits of exercise. Front Cardiovasc Med 5:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 116(10):682–692

    Article  PubMed  Google Scholar 

  49. Goldsmith R, Joanisse DR, Gallagher D, Pavlovich K, Shamoon E, Leibel RL, Rosenbaum M (2010) Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am J Physiol Regul Integr Comp Physiol 298(1):R79–R88

    Article  CAS  PubMed  Google Scholar 

  50. Joyner MJ, Pedersen BK (2011) Ten questions about systems biology. J Physiol 589(Pt 5):1017–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slentz CA, Duscha BD, Johnson JL, Ketchum K, Aiken LB, Samsa GP, Houmard JA, Bales CW, Kraus WE (2004) Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE–a randomized controlled study. Arch Intern Med 164(1):31–39

    Article  PubMed  Google Scholar 

  52. Seki Y, Berggren JR, Houmard JA, Charron MJ (2006) Glucose transporter expression in skeletal muscle of endurance-trained individuals. Med Sci Sports Exerc 38(6):1088–1092

    Article  CAS  PubMed  Google Scholar 

  53. Winder WW, Thomson DM (2007) Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47(3):332–347

    Article  CAS  PubMed  Google Scholar 

  54. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD (2011) Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305(17):1790–1799

    Article  CAS  PubMed  Google Scholar 

  55. Johansen MY, MacDonald CS, Hansen KB, Karstoft K, Christensen R, Pedersen M, Hansen LS, Zacho M, Wedell-Neergaard AS, Nielsen ST et al (2017) Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318(7):637–646

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pedersen BK (2019) The physiology of optimizing health with a focus on exercise as medicine. Annu Rev Physiol 81:607–627

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, Zheng Y, Zheng W, Gu K, Chen Z, Lu W, Shu XO (2009) The effect of regular exercise on quality of life among breast cancer survivors. Am J Epidemiol 170(7):854–862

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78(4):819–835

    Article  CAS  PubMed  Google Scholar 

  59. Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise–the role of IL-6 as a myokine. Trends Pharmacol Sci 28(4):152–156

    Article  CAS  PubMed  Google Scholar 

  60. Karstoft K, Pedersen BK (2016) Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care 19(4):270–275

    Article  CAS  PubMed  Google Scholar 

  61. Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214(Pt 2):337–346

    Article  CAS  PubMed  Google Scholar 

  62. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14(3):324–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kelly AM (2018) Exercise-induced modulation of neuroinflammation in models of Alzheimer’s disease. Brain Plast 4(1):81–94

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pedersen BK (2009) The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. J Physiol 587(Pt 23):5559–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406

    Article  CAS  PubMed  Google Scholar 

  66. Spielman LJ, Little JP, Klegeris A (2016) Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 125:19–29

    Article  CAS  PubMed  Google Scholar 

  67. Stanford KI, Goodyear LJ (2018) Muscle-adipose tissue cross talk. Cold Spring Harb Perspect Med 8(8)

    Article  CAS  Google Scholar 

  68. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl J, Thomas S, Drevon CA et al (2015) Irisin—a myth rather than an exercise-inducible myokine. Sci Rep 5:8889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raschke S, Elsen M, Gassenhuber H, Sommerfeld M, Schwahn U, Brockmann B, Jung R, Wisloff U, Tjonna AE, Raastad T et al (2013) Evidence against a beneficial effect of irisin in humans. PLoS ONE 8(9):e73680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP, Spiegelman BM (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22(4):734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157(6):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee SD, Tontonoz P (2014) Eosinophils in fat: pink is the new brown. Cell 157(6):1249–1250

    Article  CAS  PubMed  Google Scholar 

  74. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157(6):1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McNally EM (2004) Powerful genes–myostatin regulation of human muscle mass. N Engl J Med 350(26):2642–2644

    Article  CAS  PubMed  Google Scholar 

  76. McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109(5):595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shan T, Liang X, Bi P, Kuang S (2013) Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1alpha-Fndc5 pathway in muscle. FASEB J 27(5):1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A et al (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300(4):965–971

    Article  CAS  PubMed  Google Scholar 

  79. Kharitonenkov A, Larsen P (2011) FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab 22(3):81–86

    Article  CAS  PubMed  Google Scholar 

  80. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US et al (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19(2):302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roberts LD, Bostrom P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A et al (2014) beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19(1):96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587(Pt 23):5591–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B et al (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63(10):3253–3265

    Article  CAS  PubMed  Google Scholar 

  84. El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397

    Article  PubMed  CAS  Google Scholar 

  85. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wei H, Malcor JM, Harper MT (2018) Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets. Sci Rep 8(1):9987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593

    Article  CAS  PubMed  Google Scholar 

  88. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, Buzas EI, Lotvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2

    Google Scholar 

  89. Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, Egan CL, Cron L, Watt KI, Kuchel RP et al (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27(1):237–251 e234

    Article  PubMed  CAS  Google Scholar 

  90. Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, Das A, Tigges J, Toxavidis V, Ghiran I et al (2017) Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 112(4):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S, Stocchi V (2015) Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS ONE 10(5):e0125094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Oliveira GP Jr, Porto WF, Palu CC, Pereira LM, Petriz B, Almeida JA, Viana J, Filho NNA, Franco OL, Pereira RW (2018) Effects of acute aerobic exercise on rats serum extracellular vesicles diameter, concentration and small RNAs content. Front Physiol 9:532

    Article  PubMed  PubMed Central  Google Scholar 

  93. Escudero CA, Herlitz K, Troncoso F, Acurio J, Aguayo C, Roberts JM, Truong G, Duncombe G, Rice G, Salomon C (2016) Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies. Front Physiol 7:98

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 107(3):61–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

    Article  PubMed  CAS  Google Scholar 

  96. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  97. Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, Xiang J, Wu Z, Jiang G, Cao L (2015) Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 6(30):29877–29888

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD, Wu JC (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130(11 Suppl 1):S60–S69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vinas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P, Gutsol A, Carter A, Allan DS, Burns KD (2016) Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int 90(6):1238–1250

    Article  CAS  PubMed  Google Scholar 

  100. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  101. Yang Q, Diamond MP, Al-Hendy A (2016) The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. J Clin Epigenet 2(1)

    Google Scholar 

  102. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S et al (2015) KRAS-dependent sorting of miRNA to exosomes. Elife 4:e07197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Fiskaa T, Knutsen E, Nikolaisen MA, Jorgensen TE, Johansen SD, Perander M, Seternes OM (2016) Distinct small RNA Signatures in extracellular vesicles derived from breast cancer cell lines. PLoS ONE 11(8):e0161824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Chen J, Hu C, Pan P (2017) Extracellular vesicle MicroRNA transfer in lung diseases. Front Physiol 8:1028

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang H, Wang B (2016) Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomed Rep 5(3):296–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Iacomino G, Siani A (2017) Role of microRNAs in obesity and obesity-related diseases. Genes Nutr 12:23

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ortiz-Dosal A, Rodil-Garcia P, Salazar-Olivo LA (2019) Circulating MicroRNAs in human obesity: a systematic review. Biomarkers 1–41

    Google Scholar 

  108. Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gomez-Ambrosi J, Anglada R, Fernandez-Formoso JA, Ricart W et al (2013) Targeting the circulating microRNA signature of obesity. Clin Chem 59(5):781–792

    Article  CAS  PubMed  Google Scholar 

  110. Castano C, Kalko S, Novials A, Parrizas M (2018) Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A 115(48):12158–12163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heneghan HM, Miller N, McAnena OJ, O’Brien T, Kerin MJ (2011) Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 96(5):E846–E850

    Article  CAS  PubMed  Google Scholar 

  112. Iacomino G, Russo P, Stillitano I, Lauria F, Marena P, Ahrens W, De Luca P, Siani A (2016) Circulating microRNAs are deregulated in overweight/obese children: preliminary results of the I. Family study. Genes Nutr 11:7

    Google Scholar 

  113. Otton R, Bolin AP, Ferreira LT, Marinovic MP, Rocha ALS, Mori MA (2018) Polyphenol-rich green tea extract improves adipose tissue metabolism by down-regulating miR-335 expression and mitigating insulin resistance and inflammation. J Nutr Biochem 57:170–179

    Article  CAS  PubMed  Google Scholar 

  114. Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfran-Duque A, Diaz-Ruiz A, Araldi E, Baldan A, Camporez JP et al (2018) Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep 22(8):2133–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Deiuliis JA (2016) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 40(1):88–101

    Article  CAS  Google Scholar 

  116. Huang Y, Yan Y, Xv W, Qian G, Li C, Zou H, Li Y (2018) A new insight into the roles of miRNAs in metabolic syndrome. Biomed Res Int 2018:7372636

    PubMed  PubMed Central  Google Scholar 

  117. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97(12):E2271–E2276

    Article  CAS  PubMed  Google Scholar 

  118. Gottmann P, Ouni M, Saussenthaler S, Roos J, Stirm L, Jahnert M, Kamitz A, Hallahan N, Jonas W, Fritsche A et al (2018) A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab 11:145–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hernandez-Alonso P, Giardina S, Salas-Salvado J, Arcelin P, Bullo M (2017) Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects. Eur J Nutr 56(6):2181–2191

    Article  CAS  PubMed  Google Scholar 

  120. Zurawek D, Kusmider M, Faron-Gorecka A, Gruca P, Pabian P, Solich J, Kolasa M, Papp M, Dziedzicka-Wasylewska M (2017) Reciprocal MicroRNA expression in mesocortical circuit and its interplay with serotonin transporter define resilient rats in the chronic mild stress. Mol Neurobiol 54(8):5741–5751

    Article  CAS  PubMed  Google Scholar 

  121. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG (2011) Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet 4(6):614–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  123. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  CAS  PubMed  Google Scholar 

  124. Wu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 413(13–14):1058–1065

    Article  CAS  PubMed  Google Scholar 

  125. Tsai HP, Huang SF, Li CF, Chien HT, Chen SC (2018) Differential microRNA expression in breast cancer with different onset age. PLoS ONE 13(1):e0191195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yu SJ, Hu JY, Kuang XY, Luo JM, Hou YF, Di GH, Wu J, Shen ZZ, Song HY, Shao ZM (2013) MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res 19(6):1389–1399

    Article  CAS  PubMed  Google Scholar 

  127. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY et al (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33(6):679–689

    Article  CAS  PubMed  Google Scholar 

  128. Nassirpour R, Mehta PP, Baxi SM, Yin MJ (2013) miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS ONE 8(4):e62170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Papadaki C, Stoupis G, Tsalikis L, Monastirioti A, Papadaki M, Maliotis N, Stratigos M, Mastrostamatis G, Mavroudis D, Agelaki S (2019) Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 10(9):966–981

    Article  PubMed  PubMed Central  Google Scholar 

  130. Masi LN, Serdan TD, Levada-Pires AC, Hatanaka E, Silveira LD, Cury-Boaventura MF, Pithon-Curi TC, Curi R, Gorjao R, Hirabara SM (2016) Regulation of gene expression by exercise-related micrornas. Cell Physiol Biochem 39(6):2381–2397

    Article  CAS  PubMed  Google Scholar 

  131. Nielsen S, Scheele C, Yfanti C, Akerstrom T, Nielsen AR, Pedersen BK, Laye MJ (2010) Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol 588(Pt 20):4029–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pasiakos SM, McClung JP (2013) miRNA analysis for the assessment of exercise and amino acid effects on human skeletal muscle. Adv Nutr 4(4):412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA (2009) miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS ONE 4(5):e5610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM (2018) Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 9(24):17220–17237

    PubMed  PubMed Central  Google Scholar 

  135. Russell AP, Lamon S, Boon H, Wada S, Guller I, Brown EL, Chibalin AV, Zierath JR, Snow RJ, Stepto N et al (2013) Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol 591(18):4637–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Horak M, Zlamal F, Iliev R, Kucera J, Cacek J, Svobodova L, Hlavonova Z, Kalina T, Slaby O, Bienertova-Vasku J (2018) Exercise-induced circulating microRNA changes in athletes in various training scenarios. PLoS ONE 13(1):e0191060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Shamir R, Phillip M, Turck D (2013) World review of nutrition and dietetics. Nutrition and growth. Introduction. World Rev Nutr Diet 106:1–2

    Google Scholar 

  138. Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR (2017) Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res 48(5):401–413

    Article  CAS  PubMed  Google Scholar 

  139. Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC et al (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22(2):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Saleem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obi, P.O., Bydak, B., Safdar, A., Saleem, A. (2020). Extracellular Vesicles and Circulating miRNAs—Exercise-Induced Mitigation of Obesity and Associated Metabolic Diseases. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_4

Download citation

Publish with us

Policies and ethics