Skip to main content

Adipocytes Under Environmental Assault: Targets for Obesity?

  • Chapter
  • First Online:
Pathophysiology of Obesity-Induced Health Complications

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 19))

Abstract

In the recent years, there has been a tremendous concern over the possible health threat posed by endocrine-disrupting chemicals (EDCs). These are mostly synthetic chemicals found in various materials such as organo-chlorinated pesticides, industrial chemicals, plastics and plasticizers, fuels, heavy metals, additives or contaminants in food, and personal care products. These chemicals are present in the environment and are with widespread use. Human exposure to EDCs occurs via ingestion of food, dust and water, via inhalation of gases and particles in the air, and through the skin. Data from several animal models, human clinical observations, and epidemiological studies converge to implicate their association with altered reproductive function in males and females, increased incidence of breast cancer, abnormal growth patterns and neuro-developmental delays in children, disruption of adipocyte function, as well as changes in immune function. The EDCs exert their insulting effects by interfering with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, anti-androgenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans. Emerging data from in vitro as well as in vivo models suggest new targets (i.e. adipocyte differentiation and mechanisms involved in weight homeostasis) of abnormal programming by EDCs, and provide strong evidence to support the scientific term ‘obesogen’. The emerging idea of a link between EDCs and obesity expands the focus on obesity from intervention and treatment to include prevention and avoidance of these chemical modifiers. Because expansion of the adipocyte pool is critical for safely storing excess lipid, an understanding how these signaling axes can be altered by EDCs is critical in appreciating how environmental contaminants might contribute to the development of metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert JR et al (2013) Scientific decision making, policy decisions, and the obesity pandemic. Mayo Clin Proc 88(6):593–604. https://doi.org/10.1016/j.mayocp.2013.04.005

    Article  PubMed  Google Scholar 

  2. WHO (2010) Global status report on non-communicable diseases. http://apps.who.int/iris/bitstream/10665/44579/1/9789240686458_eng.pdf

  3. Sturm R (2002) The effects of obesity, smoking, and drinking on medical problems and costs. Health Aff Health Aff 21(2):245–253. https://doi.org/10.1377/hlthaff.21.2.245

    Article  Google Scholar 

  4. Gennuso K et al (2013) Sedentary behavior physical activity, and markers of health in older adults. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0b013e318288a1e5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hamilton M et al (2007) ‘Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease 56(November):2655–2667. https://doi.org/10.2337/db07-0882.cvd

  6. Goodman JE et al (2009) Weight-of-evidence evaluation of reproductive and developmental effects of low doses of Bisphenol A. Crit Rev Toxicol 39(1):1–75. Taylor & Francis. https://doi.org/10.1080/10408440802157839

    Article  CAS  PubMed  Google Scholar 

  7. Yanev S, Chaldakov G (2012) Adipose tissue: a master in toxicology. Adipobiology. https://doi.org/10.14748/adipo.v4.281

    Article  Google Scholar 

  8. Yanev S, Chaldakov GN (2012) Adipotoxicology of obesity and related diseases. Biomed Rev 23:53–60

    Article  Google Scholar 

  9. Girard J, Lafontan M (2008) Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: Visceral adipose tissue production and liver metabolism. Diab Metab. https://doi.org/10.1016/j.diabet.2008.04.002

    Article  CAS  Google Scholar 

  10. Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20(3):107–114. https://doi.org/10.1016/j.tem.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  11. Gregoire F (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med. https://doi.org/10.1177/153537020122601106

    Article  Google Scholar 

  12. Rosen ED et al (2000) Transcriptional regulation of adipogenesis, pp 1293–1307

    Google Scholar 

  13. Diamanti-Kandarakis E et al (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342. The Endocrine Society. https://doi.org/10.1210/er.2009-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gore AC et al (2015) EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. Endocr Soc 36(6):E1–E150. https://doi.org/10.1210/er.2015-1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zoeller RT et al (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153(9):4097–4110. Endocrine Society. https://doi.org/10.1210/en.2012-1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dodds EC, Lawson W (1936) Synthetic strogenic agents without the phenanthrene nucleus. Nature 137(3476):996. https://doi.org/10.1038/137996a0

    Article  CAS  Google Scholar 

  17. Le HH et al (2008) Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176(2):149–156. https://doi.org/10.1016/j.toxlet.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Hugo ER et al (2008) Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect 116(12):1642–1647. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.11537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biedermann S, Tschudin P, Grob K (2010) Transfer of Bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem 398(1):571–576. https://doi.org/10.1007/s00216-010-3936-9

    Article  CAS  PubMed  Google Scholar 

  20. Liao C, Kannan K (2011) Widespread occurrence of Bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45(21):9372–9379. American Chemical Society. https://doi.org/10.1021/es202507f

    Article  CAS  Google Scholar 

  21. Liao C, Liu F, Kannan K (2012) Bisphenol S, a new Bisphenol analogue, in paper products and currency bills and its association with Bisphenol A residues. Environ Sci Technol 46(12):6515–6522. American Chemical Society. https://doi.org/10.1021/es300876n

    Article  CAS  Google Scholar 

  22. Maserejian NN et al (2014) Dental sealants and composite restorations and longitudinal changes in immune function markers in children. Int J Paediatr Dent 24(3):215–225. https://doi.org/10.1111/ipd.12064

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155. https://doi.org/10.1016/j.reprotox.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez MF et al (2007) Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod Toxicol 24(2):259–264. https://doi.org/10.1016/j.reprotox.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  25. Gerona RR et al (2013) ‘Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environ Sci Technol 47(21):12477–12485. https://doi.org/10.1021/es402764d

    Article  CAS  Google Scholar 

  26. Patterson TA et al (2013) Concurrent determination of Bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys. Toxicol Appl Pharmacol 267(1):41–48. https://doi.org/10.1016/j.taap.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  27. Veiga-Lopez A et al (2015) Impact of gestational Bisphenol A on oxidative stress and free fatty acids: human association and interspecies animal testing studies. Endocrinology 156(3):911–922. Endocrine Society. https://doi.org/10.1210/en.2014-1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teeguarden J et al (2013) Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population? Food Chem Toxicol 62:949–963. https://doi.org/10.1016/j.fct.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  29. Rubin BS et al (2001) Perinatal exposure to low doses of Bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109(7):675–680. https://doi.org/10.1289/ehp.01109675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyawaki J et al (2007) Perinatal and postnatal exposure to Bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb 14(5):245–252. https://doi.org/10.5551/jat.E486

    Article  CAS  PubMed  Google Scholar 

  31. Ryan KK et al (2010) Perinatal exposure to Bisphenol-A and the development of metabolic syndrome in CD-1 mice. Endocrinology 151(6):2603–2612. The Endocrine Society. https://doi.org/10.1210/en.2009-1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anderson OS et al (2013) Perinatal Bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course’, FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Fed Am Soc Exp Biol 27(4):1784–1792. https://doi.org/10.1096/fj.12-223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hatch EE et al (2015) Prenatal diethylstilbestrol exposure and risk of obesity in adult women. J Dev Orig Health Dis. 6(3)201–207. Cambridge University Press. https://doi.org/10.1017/s2040174415000033

    Article  CAS  PubMed  Google Scholar 

  34. Yang M et al (2016) Bisphenol A promotes adiposity and inflammation in a nonmonotonic dose-response way in 5-week-old male and female C57BL/6J mice fed a low-calorie diet. Endocrinology 157(6):2333–2345. https://doi.org/10.1210/en.2015-1926

    Article  CAS  PubMed  Google Scholar 

  35. Lang IA et al (2008) Association of urinary Bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300(11):1303–1310. https://doi.org/10.1001/jama.300.11.1303

    Article  CAS  PubMed  Google Scholar 

  36. Braun JM et al (2014) ‘Early-life Bisphenol A exposure and child body mass index: a prospective cohort study. Environ Health Perspect. 122(11):1239–1245. NLM-Export. https://doi.org/10.1289/ehp.1408258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alonso-Magdalena P et al (2010) Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environm Health Perspect 118(9):1243–1250. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.1001993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei J et al (2011) Perinatal exposure to Bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152(8):3049–3061. https://doi.org/10.1210/en.2011-0045

    Article  CAS  PubMed  Google Scholar 

  39. Alonso-Magdalena P et al (2006) The estrogenic effect of Bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect. 114(1):106–112. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.8451

    Article  CAS  PubMed  Google Scholar 

  40. Batista TM et al (2012) Short-term treatment with Bisphenol-A leads to metabolic abnormalities in adult male mice. PloS ONE 7(3):e33814–e33814. Public Library of Science. https://doi.org/10.1371/journal.pone.0033814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Masuno H et al (2002) Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 43:676–684

    CAS  PubMed  Google Scholar 

  42. Masuno H et al (2005) Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 84(2):319–327. https://doi.org/10.1093/toxsci/kfi088

    Article  CAS  PubMed  Google Scholar 

  43. U.S.Deaprtment of Public Health and Services (1998) Toxicological profile for chlorinated dibenzo-p-dioxins

    Google Scholar 

  44. Schecter A et al (2002) Characterization of dioxin exposure in firefighters, residents, and chemical workers in the Irkutsk Region of Russian Siberia. Chemosphere 47(2):147–156. https://doi.org/10.1016/S0045-6535(01)00197-7

    Article  CAS  PubMed  Google Scholar 

  45. Harrad S et al (2003) Human dietary intake and excretion of dioxin-like compounds. J Environ Monit: JEM. https://doi.org/10.1039/b211406b

    Article  CAS  PubMed  Google Scholar 

  46. Pompa G, Caloni F, Fracchiolla ML (2003) Dioxin and PCB contamination of fish and shellfish: assessment of human exposure. Rev Int Situat Vet Res Commun. https://doi.org/10.1023/B:VERC.0000014134.23782.10

    Article  Google Scholar 

  47. Malisch R, Kotz A (2014) Dioxins and PCBs in feed and food—review from European perspective. Sci Total Environ 491–492:2–10. https://doi.org/10.1016/j.scitotenv.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  48. Birnbaum LS (1994) Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics: implications for policy and future research. Environ Health Perspect 102(8):676–679. https://doi.org/10.1289/ehp.94102676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aylward LL, Hays SM (2002) Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Eposure Sci Environ Epidemiol 12(5):319–328. https://doi.org/10.1038/sj.jea.7500233

    Article  CAS  Google Scholar 

  50. Zook DR, Rappe C (1994) Environmental sources, distribution, and fate of polychlorinated dibenzodioxins, dibenzofurans, and related organochlorines. In: Schecter A (ed) BT-dioxins and health. Springer, Boston, MA US, pp 79–113. https://doi.org/10.1007/978-1-4899-1462-0_3

    Chapter  Google Scholar 

  51. Birnbaum L, Tuomisto J (2000) Non-carcinogenic effects of TCDD in animals. Food Addit Contam. https://doi.org/10.1080/026520300283351

    Article  PubMed  Google Scholar 

  52. Swedenborg E et al (2009) Endocrine disruptive chemicals : mechanisms of action and involvement in metabolic disorders. https://doi.org/10.1677/jme-08-0132

    Article  CAS  PubMed  Google Scholar 

  53. Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol Annu Rev 73(1):135–162. https://doi.org/10.1146/annurev-physiol-012110-142200

    Article  CAS  Google Scholar 

  54. Hectors TLM et al (2011) Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 54(6):1273–1290. https://doi.org/10.1007/s00125-011-2109-5

    Article  CAS  PubMed  Google Scholar 

  55. Seefeld MD, Keesey RE, Peterson RE (1984) Body weight regulation in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 76(3):526–536. https://doi.org/10.1016/0041-008X(84)90357-0

    Article  CAS  PubMed  Google Scholar 

  56. Zhu BT et al (2008) Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin administration and high-fat diet on the body weight and hepatic estrogen metabolism in female C3H/HeN mice. Toxicol Appl Pharmacol 226(2):107–118. https://doi.org/10.1016/j.taap.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  57. Enan E, Liu PCC, Matsumura F (1992) 2,3,7,8-tetrachlorodibenzo-p-dioxin, pp 19785–19791

    Google Scholar 

  58. Enan E, Matsumura F (1993) 2,3,7,8-tetrachlorodibenzo-p-dioxin induced alterations in protein phosphorylation in guinea pig adipose tissue. J Biochem Toxicol. https://doi.org/10.1002/jbt.2570080206

    Article  PubMed  Google Scholar 

  59. Ishida T et al (2005) 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced change in intestinal function and pathology: evidence for the involvement of arylhydrocarbon receptor-mediated alteration of glucose transportation. Toxicol Appl Pharmacol 205(1):89–97. https://doi.org/10.1016/j.taap.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  60. Kurita H et al (2009) Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol 29(8):689–694. John Wiley & Sons, Ltd. https://doi.org/10.1002/jat.1459

    Article  CAS  PubMed  Google Scholar 

  61. Dalton T et al (2001) Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc Toxicol. https://doi.org/10.1385/CT:1:4:285

    Article  PubMed  Google Scholar 

  62. Michalek JE, Pavuk M (1980) Diabetes and cancer in veterans of operation ranch hand after adjustment for calendar period, days of spraying, and time spent in Southeast Asia, pp 330–340. https://doi.org/10.1097/jom.0b013e31815f889b

    Article  PubMed  Google Scholar 

  63. Kang HK et al (2006) Health status of army chemical corps Vietnam veterans who sprayed defoliant in Vietnam. Am. J. Ind Med. Wiley 49(11):875–884. https://doi.org/10.1002/ajim.20385

    Article  CAS  Google Scholar 

  64. Vena J et al (1998) Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers. Environ Health Perspect 106 Suppl 2(Suppl 2):645–653. https://doi.org/10.1289/ehp.98106645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang SL et al (2008) Increased risk of diabetes and polychlorinated biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. Diabetes Care 31(8):1574–1579. American Diabetes Association. https://doi.org/10.2337/dc07-2449

    Article  PubMed  PubMed Central  Google Scholar 

  66. Turyk M et al (2009) Organochlorine exposure and incidence of diabetes in a cohort of Great Lakes sport fish consumers. Environ Health Perspect 117(7):1076–1082. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.0800281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turunen AW et al (2008) Mortality in a cohort with high fish consumption. Int J Epidemiol 37(5):1008–1017. https://doi.org/10.1093/ije/dyn117

    Article  PubMed  Google Scholar 

  68. Lee DH et al (2010) Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study. Environ Health Perspect 118(9):1235–1242. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.0901480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee DH et al (2011) Polychlorinated biphenyls and organochlorine pesticides in plasma predict development of type 2 diabetes in the elderly. Diab Care 34(8):1778 LP–1784. https://doi.org/10.2337/dc10-2116

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee DH et al (2007) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 50(9):1841–1851. https://doi.org/10.1007/s00125-007-0755-4

    Article  CAS  PubMed  Google Scholar 

  71. Uemura H et al (2009) Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan’s general population. Environ Health Perspect 117(4):568–573. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.0800012

    Article  CAS  PubMed  Google Scholar 

  72. Chang J et al (2010) Dioxin exposure and insulin resistance in taiwanese living near a highly contaminated area 21(1). https://doi.org/10.1097/ede.0b013e3181c2fc6e

    Article  PubMed  Google Scholar 

  73. Kurzer MS, Xu X (1997) DIETARY PHYTOESTROGENS. Annu Rev Nutr Annu Rev 17(1):353–381. https://doi.org/10.1146/annurev.nutr.17.1.353

    Article  CAS  Google Scholar 

  74. Setchell KDR, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr 132(12):3577–3584. https://doi.org/10.1093/jn/132.12.3577

    Article  CAS  PubMed  Google Scholar 

  75. Lampe JW et al (1998) Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med 217(3):335–339. SAGE Publications. https://doi.org/10.3181/00379727-217-44241

    Article  CAS  Google Scholar 

  76. Setchell KDR et al (2003) Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr 133(4):1027–1035. https://doi.org/10.1093/jn/133.4.1027

    Article  CAS  PubMed  Google Scholar 

  77. Gorski RA (1963) Modification of ovulatory mechanisms by postnatal administration of estrogen to the rat. Am J Physiol-Legacy Content 205(5):842–844. American Physiological Society. https://doi.org/10.1152/ajplegacy.1963.205.5.842

    Article  CAS  Google Scholar 

  78. Lindzey J, Korach KS (1997) Developmental and physiological effects of estrogen receptor gene disruption in mice. Trends Endocrinol Metab 8(4):137–145. https://doi.org/10.1016/S1043-2760(97)00007-6

    Article  CAS  PubMed  Google Scholar 

  79. Simerly RB (2002) Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci Annu Rev 25(1):507–536. https://doi.org/10.1146/annurev.neuro.25.112701.142745

    Article  CAS  Google Scholar 

  80. Crain DA et al (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90(4):911–940. https://doi.org/10.1016/j.fertnstert.2008.08.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Newbold RR (2008) Prenatal exposure to diethylstilbestrol (DES). Fertil Steril. Elsevier 89(2):e55–e56. https://doi.org/10.1016/j.fertnstert.2008.01.062

    Article  Google Scholar 

  82. Hooper L et al (2009) Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis, Hum Reprod Update 15(4):423–440. Oxford University Press. https://doi.org/10.1093/humupd/dmp010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chandrareddy A et al (2008) Adverse effects of phytoestrogens on reproductive health: a report of three cases. Complement Ther Clin Pract 14(2):132–135. https://doi.org/10.1016/j.ctcp.2008.01.002

    Article  PubMed  Google Scholar 

  84. Lephart ED et al (2004) Behavioral effects of endocrine-disrupting substances: phytoestrogens. ILAR J 45(4):443–454. https://doi.org/10.1093/ilar.45.4.443

    Article  CAS  PubMed  Google Scholar 

  85. Patisaul H et al (2005) Dietary soy supplements produce opposite effects on anxiety in intact male and female rats in the elevated plus-maze. Behav Neurosci. https://doi.org/10.1037/0735-7044.119.2.587

    Article  CAS  PubMed  Google Scholar 

  86. .Patisaul HB (2005) Phytoestrogen action in the adult and developing brain. J Neuroendocrinol 17(1):57–64. John Wiley & Sons, Ltd. https://doi.org/10.1111/j.1365-2826.2005.01268.x

    Article  CAS  PubMed  Google Scholar 

  87. Patisaul HB et al (2012) Anxiogenic effects of developmental Bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy 7(9):e43890–e43890. PloS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0043890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. WHO (1992) Our planet, our health. WHO; Geneva, Switzerland: 1992. Report of the WHO Commission on Health and Environment

    Google Scholar 

  89. Akhtar N (1996) Insecticide-induced changes in secretory activity of the thyroid gland in rats. J Appl Toxicol 16(5):397–400. Wiley Ltd. https://doi.org/10.1002/(sici)1099-1263(199609)16:5%3c397::aid-jat362%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  90. Cocco P (2002) On the rumors about the silent spring: review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects. Cadernos de Saúde Pública. scielo, pp 379–402

    Google Scholar 

  91. Leghait J et al (2009) Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes. Toxicology 255(1):38–44. https://doi.org/10.1016/j.tox.2008.09.026

    Article  CAS  PubMed  Google Scholar 

  92. Birnbaum LS, Fenton SE (2003) Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 111(4):389–394. https://doi.org/10.1289/ehp.5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goldman L et al (2004) Environmental pediatrics and its impact on government health policy. Pediatrics 113(Supplement 3):1146 LP–1157. http://pediatrics.aappublications.org/content/113/Supplement_3/1146.abstract

  94. Sharpe RM (2006) Pathways of endocrine disruption during male sexual differentiation and masculinisation. Best Pract Res Clin Endocrinol Metab 20(1):91–110. https://doi.org/10.1016/j.beem.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  95. Sultan C et al (2001) Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation. Mol Cell Endocrinol 178(1):99–105. https://doi.org/10.1016/S0303-7207(01)00430-0

    Article  CAS  PubMed  Google Scholar 

  96. Skakkebæk NE (2002) Endocrine disrupters and testicular dysgenesis syndrome. Hormon Res Paediatr 57(suppl 2):43. https://doi.org/10.1159/000058100

    Article  Google Scholar 

  97. Roeleveld N, Bretveld R (2008) The impact of pesticides on male fertility. Curr Opin Obstet Gynecol. https://doi.org/10.1097/GCO.0b013e3282fcc334

    Article  PubMed  Google Scholar 

  98. Falck Jr F et al (1992) Pesticides and PCB residues in human breast lipids and their relation to breast cancer. Arch Environ Health

    Google Scholar 

  99. Davis DL et al (1993) Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Health Perspect 101(5):372–377. https://doi.org/10.1289/ehp.93101372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Parron Carreño T et al (2010) Increased breast cancer risk in women with environmental exposure to pesticides. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2010.03.614

    Article  Google Scholar 

  101. Alavanja MCR et al (2005) Cancer incidence in the agricultural health study. Scand J Work Environ Health (1):39–45. http://www.sjweh.fi/show_abstract.php?abstract_id=895

  102. Prins GS (2008) Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer 15(3):649–656. https://doi.org/10.1677/erc-08-0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dich J, Wiklund K (1998) Prostate cancer in pesticide applicators in Swedish agriculture. Prostate 34(2):100–112. Wiley Ltd. https://doi.org/10.1002/(sici)1097-0045(19980201)34:2%3c100::aid-pros4%3e3.0.co;2-o

    Article  CAS  PubMed  Google Scholar 

  104. Alavanja MCR et al (2003) Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort. Am J Epidemiol 157(9):800–814. https://doi.org/10.1093/aje/kwg040

    Article  PubMed  Google Scholar 

  105. Bryan GW et al (1986) The Decline of the gastropod Nucella lapillus around South-West England: evidence for the effect of tributyltin from antifouling paints. J Mar Biol Assoc UK 66(3):611–640. Cambridge University Press. https://doi.org/10.1017/s0025315400042247

    Article  CAS  Google Scholar 

  106. Short J et al (1989) Occurrence of tri-n-butyltin-caused imposex in the North Pacific marine snail Nucella lima in Auke Bay, Alaska. Mar Biol. https://doi.org/10.1007/BF00428480

    Article  Google Scholar 

  107. Ellis DV, Agan Pattisina L (1990) Widespread neogastropod imposex: a biological indicator of global TBT contamination? Mar Pollut Bull 21(5):248–253. https://doi.org/10.1016/0025-326X(90)90344-8

    Article  CAS  Google Scholar 

  108. Heidrich DD, Steckelbroeck S, Klingmuller D (2001) Inhibition of human cytochrome P450 aromatase activity by butyltins. Steroids 66(10):763–769. https://doi.org/10.1016/S0039-128X(01)00108-8

    Article  CAS  PubMed  Google Scholar 

  109. Gooding MP et al (2003) The biocide tributyltin reduces the accumulation of testosterone as fatty acid esters in the mud snail (Ilyanassa obsoleta). Environ Health Perspect 111(4):426–430. https://doi.org/10.1289/ehp.5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bishop CA et al (1995) Chlorinated hydrocarbons in early life stages of the common snapping turtle (Chelydra serpentina serpentina) from a coastal wetland on lake Ontario, Canada. Environ Toxicol Chem 14(3):421–426. Wiley Ltd. https://doi.org/10.1002/etc.5620140311

    Article  CAS  Google Scholar 

  111. Guillette LJ Jr et al (1994) Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect 102(8):680–688. https://doi.org/10.1289/ehp.94102680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guillette LJ Jr et al (1996) Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. Gen Comp Endocrinol 101(1):32–42. https://doi.org/10.1006/gcen.1996.0005

    Article  CAS  PubMed  Google Scholar 

  113. Guillette L et al (1999) Serum concentrations of various environmental contaminants and their relationship to sex steroid concentrations and phallus size in juvenile American alligators. Arch Environ Contam Toxicol. https://doi.org/10.1007/PL00006617

    Article  PubMed  Google Scholar 

  114. Fry DM, Toone CK (1981) DDT-induced feminization of gull embryos. Science 213(4510):922 LP–924. https://doi.org/10.1126/science.7256288

    Article  CAS  PubMed  Google Scholar 

  115. Munkittrick KR et al (1991) Impact of bleached kraft mill effluent on population characteristics, liver MFO activity, and serum steroid levels of a Lake Superior white sucker (Catostomus commersoni) population. Can J Fish Aquat Sci 48(8):1371–1380. NRC Research Press. https://doi.org/10.1139/f91-164

    Article  CAS  Google Scholar 

  116. Purdom CE et al (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8(4):275–285. Taylor & Francis. https://doi.org/10.1080/02757549408038554

    Article  CAS  Google Scholar 

  117. Hand JL, Southern E (1985) Ecology and behavior of gulls. In: Proceedings of an international symposium of the colonial waterbird group and the pacific seabird group, San Francisco, California. Studies in Avian Biology No. 10

    Google Scholar 

  118. Crisp TM et al (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106(Suppl 1):11–56. https://doi.org/10.1289/ehp.98106s111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28(4):319–361. Taylor & Francis. https://doi.org/10.1080/10408449891344236

    Article  CAS  PubMed  Google Scholar 

  120. Vos JG et al (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the european situation. Crit Rev Toxicol 30(1):71–133. Taylor & Francis. https://doi.org/10.1080/10408440091159176

    Article  CAS  PubMed  Google Scholar 

  121. Reijnders PJH (1986) Reproductive failure in common seals feeding on fish from polluted coastal waters. Nature 324(6096):456–457. https://doi.org/10.1038/324456a0

    Article  CAS  PubMed  Google Scholar 

  122. Norstrom RJ, Muir DCG (1994) Chlorinated hydrocarbon contaminants in arctic marine mammals. Sci Total Environ 154(2):107–128. https://doi.org/10.1016/0048-9697(94)90082-5

    Article  CAS  PubMed  Google Scholar 

  123. Facemire CF, Gross TS Guillette Jr LJ (1995) Reproductive impairment in the Florida panther: nature or nurture?. Environ Health Perspect 103(Suppl 4):79–86. https://doi.org/10.1289/ehp.103-1519283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oskam I et al (2003) Organochlorines affect the major androgenic hormone, testosterone, in male polar bears (Ursus maritimus) at Svalbard. J Toxicol Environ Health. Part A. https://doi.org/10.1080/15287390390211342

    Article  CAS  Google Scholar 

  125. Palma P et al (2009) Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna. Chemosphere 76(3):335–340. https://doi.org/10.1016/j.chemosphere.2009.03.059

    Article  CAS  PubMed  Google Scholar 

  126. Palma P et al (2009) Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74(5):676–681. https://doi.org/10.1016/j.chemosphere.2008.10.021

    Article  CAS  PubMed  Google Scholar 

  127. Wilson VS et al (2009) The herbicide linuron reduces testosterone production from the fetal rat testis during both in utero and in vitro exposures. Toxicol Lett 186(2):73–77. https://doi.org/10.1016/j.toxlet.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  128. Thayer KA et al (2012) Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect 120(6):779–789. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.1104597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bourez S et al (2013) The dynamics of accumulation of PCBs in cultured adipocytes vary with the cell lipid content and the lipophilicity of the congener. Toxicol Lett 216(1):40–46. https://doi.org/10.1016/j.toxlet.2012.09.027

    Article  CAS  PubMed  Google Scholar 

  130. Elobeid MA et al (2010) Endocrine disruptors and obesity: an examination of selected persistent organic pollutants in the NHANES 1999-2002 data. Int J Environ Res Public Health 7(7):2988–3005. Molecular Diversity Preservation International (MDPI). https://doi.org/10.3390/ijerph7072988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210(5):623–634. https://doi.org/10.1016/j.ijheh.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  132. Hannon PR, Flaws JA (2015) The effects of phthalates on the ovary. Front Endocrinol 6:8. Frontiers Media S.A. https://doi.org/10.3389/fendo.2015.00008

  133. Huang P et al (2012) Phthalates exposure and endocrinal effects : an epidemiological review phthalates exposure and endocrinal effects : an epidemiological review. https://doi.org/10.6227/jfda.2012200401

  134. Kamrin MA (2014) Phthalate risks, phthalate regulation, and public health : a review. https://doi.org/10.1080/10937400902729226

    Article  CAS  Google Scholar 

  135. Hao C et al (2012) The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci Rep 32(6):619–629. Portland Press Ltd. https://doi.org/10.1042/bsr20120042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yaghjyan L et al (2016) Maternal exposure to di-2-ethylhexylphthalate and adverse delivery outcomes: A systematic review. Reprod Toxicol 65:76–86. https://doi.org/10.1016/j.reprotox.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wassenaar PNH, Legler J (2017) Systematic review and meta-analysis of early life exposure to di(2-ethylhexyl) phthalate and obesity related outcomes in rodents. Chemosphere 188:174–181. https://doi.org/10.1016/j.chemosphere.2017.08.165

    Article  CAS  PubMed  Google Scholar 

  138. Schmidt JS et al (2012) Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ Health Perspect 120(8):1123–1129. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.1104016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Oken E, Levitan EB, Gillman MW (2008) Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (2005) 32(2):201–210. https://doi.org/10.1038/sj.ijo.0803760

    Article  PubMed  Google Scholar 

  140. Ino T (2010) Maternal smoking during pregnancy and offspring obesity: meta-analysis. Pediatr Int 52(1):94–99. Wiley Ltd. (10.1111). https://doi.org/10.1111/j.1442-200x.2009.02883.x

    Article  PubMed  Google Scholar 

  141. Riedel C et al (2014) Parental smoking and childhood obesity: higher effect estimates for maternal smoking in pregnancy compared with paternal smoking—a meta-analysis. Int J Epidemiol 43(5):1593–1606. https://doi.org/10.1093/ije/dyu150

    Article  PubMed  Google Scholar 

  142. Rayfield S, Plugge E (2017) Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J Epidemiol Community Health 71(2):162 LP–173. https://doi.org/10.1136/jech-2016-207376

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Behl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behl, S., Singh, J. (2020). Adipocytes Under Environmental Assault: Targets for Obesity?. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_2

Download citation

Publish with us

Policies and ethics