Skip to main content

Thermoplastic Composites for Aerospace Applications

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes

Abstract

Composites world is in continuous evolution and there has been a progressive change in terms of manufacturing processes, passing from standard wet or prepreg manual layup to automated (preforming) technologies, with the objective to increase production rates and make cheaper manufacturing processes. This chapter deals with most recent advancements and applications of thermoplastic composites, focusing on the reasons why for aerospace sector, they are increasingly representing a more viable manufacturing solution for structural components. Starting from thermoplastic polymer structures and difference with respect to thermoset matrix based composites, the standard consolidation processes (autoclave/thermoforming) together with most promising automated and continuous out-of- autoclave manufacturing concepts and processes (Automated Fiber Placement/Automated Tape Laying, In Situ Consolidation, Continuous Compression Molding, Pultrusion), including assembling methods (Fusion/Welding), are illustrated. Furthermore, an overview on different recycling concepts related to thermoplastics and thermosets composites is provided. At last, an overview on the European thermoplastic development roadmap, supported by the EU’s Horizon 2020 Research and Innovation program (2014–2021) for the next generation of aircrafts, is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageorges C, Ye L, Hou M (2001) Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Compos Part A 32:839–857

    Article  Google Scholar 

  • Ahmed TJ, Stavrov D, Bersee HEN, Beukers A (2006) Induction welding of thermoplastic composites—an overview. Compos Part A 37:1638–1651

    Article  Google Scholar 

  • Barile M, Lecce L, Sportelli A, Iagulli G, Raffone M (2017) Systematic down selection approach to automated composites lay-down processes. In: The third international symposium on automated composites manufacturing, Montreal (Canada), April 2017

    Google Scholar 

  • Barile M, Iannone V, Lecce L (2018) Automated fabrication of hybrid thermoplastic prepreg material to be processed by In-Situ Consolidation Automated Fiber Placement process. In: 5th international conference of engineering against failure, Chios, 20–22 June 2018

    Google Scholar 

  • Biron M (2007) Thermoplastics and thermoplastic composites. Elsevier, Amsterdam

    Google Scholar 

  • Black S (2016) Thermoplastic composites in flight...for decades. Compositesworld.comhttps://www.compositesworld.com/articles/thermoplastic-composites-in-flight-for-decades

  • Davies P, Cantwell W et al (1989) Cooling rate effects in carbon fibre/PEEK composites. Presented at 3rd ASTM symp. on fatigue & fracture, Orlando, Nov.

    Google Scholar 

  • Flightpath 2050 Europe’s Vision for Aviation—Report of the High Level Group on Aviation Research (n.d.)

    Google Scholar 

  • Gardiner G (n.d.) Aerospace-grade compression molding. Compositesworld.comhttps://www.compositesworld.com/articles/aerospace-grade-compression-molding

  • Hart-Smith (1973) Adhesive bonded single lap joints. NASA CR-112236, Jan 1973

    Google Scholar 

  • Kenny J, D’Amore A, Nicolais L, Iannone M, Scatteia B (1989) Processing of amorphous PEEK and amorphous PEEK based composites. SAMPE J 25(4):21 https://www.osti.gov/biblio/5422250

  • Maffezzoli A, Kenny JM, Nicolais L (1989) SAMPE J 25(4):35

    CAS  Google Scholar 

  • Mallon PJ, O’Bradaigh CM et al (1998) Polymeric diaphragm forming of complex curvatures thermoplastic composite parts. Composites 20(1):48–56

    Article  Google Scholar 

  • Manson JE, Schneider T, Seferis JC (1990) Press-forming of continuous-fiber-reinforced thermoplastic composites. Polym Compos 11(2):114–120

    Article  CAS  Google Scholar 

  • Marsh G (2007) Airbus takes on Boeing with reinforced plastic. Reinf Plast 51(11):26–27, 29. https://doi.org/10.1016/S0034-3617(07)70383-1

    Article  Google Scholar 

  • Marsh G (2013) Bombardier throws down the gauntlet with CSeries airliner. Reinf Plast 55(6):22–26. https://doi.org/10.1016/S0034-3617(11)70181-3

    Article  Google Scholar 

  • McCool R, Murphy A et al (2012) Thermoforming carbon fiber-reinforced thermoplastic composites. Proc Inst Mech Eng Part L J Mater Des Appl 226(2):91–102. https://doi.org/10.1177/14644207124373

    Article  CAS  Google Scholar 

  • MIL-HDBK-17-3F: Composite materials handbook, vol 3. Polymer matrix composites materials usage, design. Cap. 6. Department of Defense

    Google Scholar 

  • Nguyen-Chung T, Friedrich K, Mennig G (2007) Processability of pultrusion using natural fiber and thermoplastic matrix. Res Lett Mater Sci 2007:1–6. https://doi.org/10.1155/2007/37123

    Article  Google Scholar 

  • NHYTE Project (n.d.). https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-transport/aviation/nhyte

  • Novo PJ, Nunes JP, Silva JF, Tinoco V, Marques AT (2013) Production of thermoplastic matrix pre-impregnated materials to manufacture composite pultruded profiles. Ciênc Tecnol Mater 25:84–90

    Google Scholar 

  • O’Bradaigh CM, Mallon PJ (1989) Compos Sci Technol 35:235

    Article  Google Scholar 

  • Offringa AR (1996) Thermoplastic applications composites-rapid processing applications. Compos Part A 27(A):329–336

    Article  Google Scholar 

  • Pappadà S, Salomi A, Montanaro J et al (2015) Fabrication of a thermoplastic matrix stiffened panel by induction welding. Aerosp Sci Technol 43:314–320

    Article  Google Scholar 

  • Patent EP3017931A1 (2014) Induction machine for bonding polymeric matrix conductive composite material and bonding method for said machine

    Google Scholar 

  • Pepliński K, Mozer A (2011) Ansys Polyflow software use to optimize the sheet thickness distribution in thermoforming process. J Pol CIMAC 6:215–220

    Google Scholar 

  • Preimpregnated materials with semi-crystalline matrix and amorphous surface layers (2011) EP 2 109 532 B1 of 02/03/2011, LEONARDO S.p.A.

    Google Scholar 

  • Red C (2014) The outlook for thermoplastics in aerospace composites, 2014-2023. In: High-performance composites. Gardner Business Media, Inc., Cincinatti, pp 54–63

    Google Scholar 

  • Rudolf R, Mitschang P, Neitzel M (2000) Induction heating of continuous carbon-fibre reinforced thermoplastics. Compos Part A 31:1191–1202

    Article  Google Scholar 

  • Scherer R, Friedrich K (1991) Inter- and intraply-slip flow processes during thermoforming of cf/pp-laminates. Compos Manuf 2(2):92–96

    Article  CAS  Google Scholar 

  • Starke J (2016) Carbon composites in automotive structural applications, Eucia: composites and sustainability 19.03.16. http://www.eucia.eu/userfiles/files/Starke-Eucia%202016-V4-Druck%20b.pdf

  • Thoppul SD, Finegan J, Gibson RF (2009) Mechanics of mechanically fastened joints in polymer–matrix composite structures—a review. Compos Sci Technol 69(3–4):301–329

    Article  CAS  Google Scholar 

  • Vodicka R (1996) Thermoplastics for airframe application, a review of the properties and repair methods for thermoplastic composites. Department of Defence, DSTO Aeronautical and Maritime Research Laboratory, Melbourne Victoria

    Google Scholar 

  • Wakeman MD, Blanchard P (2005) Void evolution during stamp-forming of thermoplastic composites. In: 15th international conference on composite materials (ICCM-15)

    Google Scholar 

  • Wong J (2017) Processing of high performance thermoplastic composites, 131-5048-00L manufacturing of polymer composite, CMAS Lab ETH Zurich, 01.03.2017

    Google Scholar 

  • Ye L, Beehag A (1996) Role of cooling pressure on interlaminar fracture properties of commingled CF/PEEK composites. Compos A: Appl Sci Manuf 27(3):175–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barile, M., Lecce, L., Iannone, M., Pappadà, S., Roberti, P. (2020). Thermoplastic Composites for Aerospace Applications. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_4

Download citation

Publish with us

Policies and ethics