Skip to main content

Thermosetting Composite Materials in Aerostructures

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes

Abstract

Thermosetting composites in aircraft structures are typically based on high-performance reinforcing materials, such as carbon fibre, held together by polymer resins, such as epoxies, which undergo an irreversible curing reaction to form the desired structural components. Compared to conventional metallic materials used in aerostructures, thermosetting composites offer superior specific strength and stiffness, along with improved corrosion and fatigue resistance. This can lead to significant gains in performance and fuel efficiency, along with reduced maintenance requirements. Consequently, these materials continue to gain favour in aircraft construction. The drive towards lower production costs, partly facilitated through the development of larger integrated structural components at higher production rates, is leading to new innovations in manufacturing. Advances in liquid resin infusion methodologies are helping to produce such large structural components more economically, while the development of automated fibre placement technologies is enhancing production quality and minimising conventional labour costs. However, a lack of maturity and experience in the analysis, design, manufacture, and maintenance of composite aerostructures continue to necessitate the need for greater research. For example, improvements in non-destructive inspection and adhesively bonded repairs are required to make composite maintenance more efficient and reliable. Further weight savings and performance benefits could also be achieved by integrating essential systems within composite structures, imbuing them with ‘multifunctionality’. Composite waste is another significant issue, given the projected increase in demand for these materials. In particular, thermoset composite recycling is expected to be a key technology requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Falzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Falzon, B.G., Pierce, R.S. (2020). Thermosetting Composite Materials in Aerostructures. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_3

Download citation

Publish with us

Policies and ethics