Skip to main content

Laser Joining Processes for Lightweight Aircraft Structures

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes
  • 1975 Accesses

Abstract

This chapter deals with laser-based processes for joining light metals and lightweight structures. At the beginning, a short introduction concerning the tool laser beam is given. A subsequent focus will be on laser welding of aluminum, in particular deep penetration laser welding (keyhole welding). A section addresses the specific challenges of this process and the current solution approaches from research and development. Hereby, the increase in the gap bridging ability, the increase in the seam surface quality, the reduction in the susceptibility to hot cracking, the prevention of spatters and pores, and the increase in process reliability are highlighted. Especially, the laser welding of thin sheets up to thicknesses of a few millimeters is covered. Alongside the joining of aluminum alloys, the joining of dissimilar materials in particular plays a key role in aircraft construction in order to transfer the advantages of a targeted eco- and cost-efficient material mix into an efficient multi-material design of lightweight structures. A further subchapter is therefore dedicated to laser-based joining of aluminum and titanium components by deep penetration as well as heat conduction laser processes. The focus here is on the process technology approaches and the strength of the joints achieved. An outlook into the future is given by the consideration of aluminum-titanium-carbon fiber-reinforced plastic (CFRP) transition structures. However, laser irradiation has a high potential not only as a direct joining tool but also for preprocessing or post processing or as a supplementary process. Therefore, laser-based adhesive surface pretreatment processes as well as the production of novel hybrid laminar flow control (HLFC) structures based on the combination of several laser machining processes as an aerodynamic approach to reduce the kerosene consumption are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalderink BJ, Pathiraj B (2010) Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications. Int J Adv Manuf Technol 48:143–154. https://doi.org/10.1007/s00170-009-2270-x

    Article  Google Scholar 

  • Abbas A, de Vicente J, Valero E (2013) Aerodynamic technologies to improve aircraft performance. Aerosp Sci Technol 28(1):100–132. https://doi.org/10.1016/j.ast.2012.10.008

    Article  Google Scholar 

  • Allison A, Scudamore R (2014) European Strategic Research Agenda: Joining (prepared by the Joining Sub-Platform)

    Google Scholar 

  • Arata Y, Miyamoto I (1974) Some fundamental properties of high power laser beam as a heat source. Trans JWRI 3:1–20

    Article  CAS  Google Scholar 

  • Arata Y, Matsuda F, Mukae S et al (1973) Effect of weld solidification mode on tensile properties of aluminum weld metal. Trans JWRI 2(2):184–190

    CAS  Google Scholar 

  • Bang H, Bang H, Song H et al (2013) Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des 51(0):544–551. https://doi.org/10.1016/j.matdes.2013.04.057

    Article  CAS  Google Scholar 

  • Bautze T (2018) Seam tracking with OCT and beam oscillation for automotive laser remote welding applications. In: European automotive laser applications (EALA)

    Google Scholar 

  • Beck M (1996) Modellierung des Lasertiefschweißens. B. G. Teubner, Stuttgart

    Google Scholar 

  • Bergmann JP (2004) Laserstrahlschweißen von Titanwerkstoffen unter Berücksichtigung des Einflusses des Sauerstoffes. Mat.-wiss. u. Werkstofftech. 35(9):543–556. https://doi.org/10.1002/mawe.200400776

    Article  CAS  Google Scholar 

  • Bergmann JP, Bielenin M, Stambke M et al (2013) Effects of diode laser superposition on pulsed laser welding of aluminum. Lasers Manuf (LiM) (41):180–189. https://doi.org/10.1016/j.phpro.2013.03.068

    Article  CAS  Google Scholar 

  • Bergmann JP, Bielenin M, Feustel T (2015) Aluminum welding by combining a diode laser with a pulsed Nd: YAG laser. Weld World 59(2):307–315. https://doi.org/10.1007/s40194-014-0218-8

    Article  CAS  Google Scholar 

  • Berkmanns J, Behler K, Beyer E (1992) Der Laser—ein neues Werkzeug zum Schweißen von Aluminiumwerkstoffen. In: Proceedings of 4th European conference on laser treatment of materials ECLAT ’92, Oberursel, pp 151–156

    Google Scholar 

  • Brock J, Aidun D (1995) The effect of titanium and boron on GMAW weldments. In: Proceedings of the 6th international conference on aluminum weldments, pp 343–356

    Google Scholar 

  • Cahoon JR, Tandon KN, Chaturvedi MC (1992) Effect of gravity level on grain refinement in aluminum alloys. Metall Trans A 23:3399–3404

    Google Scholar 

  • Cao X, Wallace W, Immarigeon J-P et al (2003) Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater Manuf Process 18(1):23–49. https://doi.org/10.1081/AMP-120017587

    Article  CAS  Google Scholar 

  • Casalino G, Mortello M (2016) Modeling and experimental analysis of fiber laser offset welding of Al-Ti butt joints. Int J Adv Manuf Technol 83:89–98. https://doi.org/10.1007/s00170-015-7562-8

    Article  Google Scholar 

  • Casalino G, Mortello M, Peyre P (2015) Yb–YAG laser offset welding of AA5754 and T40 butt joint. J Mater Process Technol 223:139–149. https://doi.org/10.1016/j.jmatprotec.2015.04.003

    Article  CAS  Google Scholar 

  • Chen W, Molian P (2007) Dual-beam laser welding of ultra-thin AA 5052-H19 aluminum. Int J Adv Manuf Technol 39:889–897. https://doi.org/10.1007/s00170-007-1278-3

    Article  Google Scholar 

  • Chen Y, Chen S, Li L (2009) Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method. Int J Adv Manuf Technol 44(3–4):265–272. https://doi.org/10.1007/s00170-008-1837-2

    Article  Google Scholar 

  • Chen S, Li L, Chen Y et al (2010) Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire. Trans Nonferrous Metals Soc China 20(1):64–70. https://doi.org/10.1016/S1003-6326(09)60098-4

    Article  CAS  Google Scholar 

  • Cho W-I, Schultz V, Woizeschke P (2018a) Numerical study of the effect of the oscillation frequency in buttonhole welding. J Mater Process Technol 261:202–212. https://doi.org/10.1016/j.jmatprotec.2018.05.024

    Article  Google Scholar 

  • Cho W-I, Woizeschke P, Schultz V (2018b) Simulation of molten pool dynamics and stability analysis in laser buttonhole welding. Procedia CIRP 74:687–690. https://doi.org/10.1016/j.procir.2018.08.042

    Article  Google Scholar 

  • Cross CE (2005) On the origin of weld solidification cracking. In: Böllinghaus T, Herold H (eds) Hot cracking phenomena in welds. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Dausinger F (1995) Strahlwerkzeug Laser: Energiekopplung und Prozesseffektivität. Zugl.: Stuttgart, Univ., Habil.-Schr. Laser in der Materialbearbeitung. Teubner, Stuttgart

    Google Scholar 

  • Dev S, Stuart AA, Kumaar RRD et al (2007) Effect of scandium additions on microstructure and mechanical properties of Al–Zn–Mg alloy welds. Mater Sci Eng A 467(1–2):132–138. https://doi.org/10.1016/j.msea.2007.02.080

    Article  CAS  Google Scholar 

  • Dilthey U (2005) Schweißtechnische Fertigungsverfahren 2: Verhalten der Werkstoffe beim Schweißen, 3., bearbeitete Auflage. VDI-Buch. Springer, Berlin

    Google Scholar 

  • Dilthey U (2006) Schweißtechnische Fertigungsverfahren 1: Schweiß- und Schneidtechnologien, 3., bearbeitete Auflage. VDI-Buch. Springer, Berlin

    Google Scholar 

  • Dressler U, Biallas G, Alfaro Mercado U (2009) Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng A 526(1–2):113–117. https://doi.org/10.1016/j.msea.2009.07.006

    Article  CAS  Google Scholar 

  • Farrel WJ, Ferrario JD (1987) A computer-controlled, wide-bandwidth deflection system for electron beam welding and heat treating. Weld J 10:41–49

    Google Scholar 

  • Fetzer F, Hagenlocher C, Weber R (2018) High power, high speed, high quality. LTJ 15(3):28–31. https://doi.org/10.1002/latj.201800017

    Article  Google Scholar 

  • Fonseca de Arruda AC, Prates de Campos Filho M (1983) Rheocasting techniques applied to grain refinement of aluminum alloys. In: Proceedings of the conference on solidification technology in the foundry and cast house, Coventry (UK), pp 143–146

    Google Scholar 

  • Fuji A, Ameyama K, North TH (1995) Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints. J Mater Sci 30

    Article  CAS  Google Scholar 

  • Gao M, Chen C, Gu Y et al (2014) Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys. Materials 7(3):1590–1602. https://doi.org/10.3390/ma7031590

    Article  CAS  Google Scholar 

  • Gatzen M (2014) Durchmischung beim Laserstrahltiefschweißen unter dem Einfluss niederfrequenter Magnetfelder. Dissertation. Strahltechnik, Bd. 55. BIAS Verlag, Bremen

    Google Scholar 

  • Geisel M (2002) Prozeßkontrolle und -steuerung beim Laserstrahlschweißen mit den Methoden der nichtlinearen Dynamik. Meisenbach Bamberg

    Google Scholar 

  • Göbel G, Brenner B, Beyer E (2007) New application possibilities for fiber laser welding. In: Lu Y (ed) 26th International congress on applications of lasers & electro-optics (ICALEO 2007), Orlando, pp 102–108

    Google Scholar 

  • Gref W (2005) Laserstrahlschweißen von Aluminiumwerkstoffen mit der Fokusmatrixtechnik. Laser in der Materialbearbeitung. Utz, München

    Google Scholar 

  • Gruss H (2008) Schweißgerechte Struktur- und Prozessstrategien im Flugzeugbau. Dissertation

    Google Scholar 

  • Gruss H, Herold H, Streitenberger M (2008) Verbesserung des Strukturverhaltens laserstrahlgeschweißter Haut-Stringer-Verbindungen. In: 6. Laser-Anwenderforum Bremen, BIAS-Verlag

    Google Scholar 

  • Habenicht G (2009) Kleben: Grundlagen, Technologien, Anwendungen, 6., aktualisierte Aufl. VDI. Springer, Berlin

    Book  Google Scholar 

  • Haboudou A, Peyre P, Vannes AB et al (2003) Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mater Sci Eng A 363(1):40–52. https://doi.org/10.1016/S0921-5093(03)00637-3

    Article  CAS  Google Scholar 

  • He X, Zhang Y, Xing B et al (2015) Mechanical properties of extensible die clinched joints in titanium sheet materials. Mater Des 71:26–35. https://doi.org/10.1016/j.matdes.2015.01.005

    Article  CAS  Google Scholar 

  • Heider P (1994) Lasergerechte Konstruktion und lasergerechte Fertigungsmittel zum Schweissen grossformatiger Aluminium-Strukturbauteile, Als Ms. gedr. Fortschrittberichte VDI : Reihe 2, Fertigungstechnik, Nr. 326. VDI-Verl., Düsseldorf

    Google Scholar 

  • Heimerdinger C (2003) Laserstrahlschweißen von Aluminiumlegierungen für die Luftfahrt. Zugl.: Stuttgart, Univ., Diss., 2003. Laser in der Materialbearbeitung. Utz, München

    Google Scholar 

  • Herrmann A, Schiebel P, Hoffmeister C et al (2008) Verbindungen zwischen einem monolithischen Metallbauteil und einem endlosfaserverstärkten Laminatbauteil sowie Verfahren zur Herstellung derselben (DE102008047333B4)

    Google Scholar 

  • Heß A, Bassi C, Schellinger F (2011) Heißrissfreies Remotelaserstrahlfügen von 6xxxer Aluminiumwerkstoffen. Laser Mgazin 2:30–31

    Google Scholar 

  • Hilbinger RM (2001) Heißrissbildung beim Schweißen von Aluminium in Blechrandlage. Zugl.: Bayreuth, Univ., Diss., 2001. Institut für Materialforschung—Bayreuth, vol 9. Utz Wiss, München

    Google Scholar 

  • Hohenberger B (2003) Laserstrahlschweissen mit Nd:Yag-Doppelfokustechnik: Steigerung von Prozeßstabilität, Flexibilität und verfügbarer Strahlleistung. Zugl.: Stuttgart, Univ., Diss., 2002. Laser in der Materialbearbeitung. Utz, München

    Google Scholar 

  • Janaki Ram GD, Mitra TK, Shankar V et al (2003) Microstructural refinement through inoculation of type 7020 Al–Zn–Mg alloy welds and its effect on hot cracking and tensile properties. J Mater Process Technol 142(1):174–181. https://doi.org/10.1016/S0924-0136(03)00574-0

    Article  CAS  Google Scholar 

  • Jin X, Li L (2004) An experimental study on the keyhole shapes in laser deep penetration welding. Opt Lasers Eng 41(5):779–790. https://doi.org/10.1016/S0143-8166(03)00034-4

    Article  Google Scholar 

  • Jones L, Alfile J-P, Aubert P et al (2000) Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance. Fusion Eng Des 51–52:985–991. https://doi.org/10.1016/S0920-3796(00)00412-9

    Article  Google Scholar 

  • Kahraman N, Gulenc B, Findik F (2007) Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates. Int J Impact Eng 34(8):1423–1432. https://doi.org/10.1016/j.ijimpeng.2006.08.003

    Article  Google Scholar 

  • Kaplan AFH, Powell J (2011) Spatter in laser welding. J Laser Appl 23(3):32005. https://doi.org/10.2351/1.3597830

    Article  Google Scholar 

  • Kappelsberger E (1987) Werkstückspezifische Bedingungen beim Laserschweißen: Laser/Optoelektronik in der Technik/Laser/Optoelectronics in Engineering

    Google Scholar 

  • Katayama S (2013) The unweldables. Laser Community 2:24–25

    Google Scholar 

  • Katayama S, Kawahito Y (2009) Elucidation of phenomena in high-power fiber laser welding and development of prevention procedures of welding defects. In: Gapontsev DV, Kliner DA, Dawson JW et al (eds) SPIE LASE: lasers and applications in science and engineering. SPIE, 71951R

    Google Scholar 

  • Katayama S, Seto N, Kim JD et al (1997) Formation mechanism and reduction method of porosity in laser welding of stainless steel. In: Proceedings of the 16th international congress on applications of lasers and electro-optics (ICALEO), pp 83–92

    Google Scholar 

  • Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser welding. Phys Procedia 39:8–16. https://doi.org/10.1016/j.phpro.2012.10.008

    Article  Google Scholar 

  • Katayama S, Mizutani M, Kawahito Y et al (2015) Fundamental research of 100 kW fiber laser welding technology. In: Proceedings of the lasers in manufacturing conference (LiM), #342

    Google Scholar 

  • Kempa S (2014) Potentiale und Grenzen beim thermischen Fügen von Multimaterial-Verbindungen. Schweißtechnik Soudure 2014(1):36–39

    Google Scholar 

  • Klassen M (2000) Prozeßdynamik und resultierende Prozeßinstabilitäten beim Laserstrahlschweißen von Aluminium. Dissertation, Universiät Bremen

    Google Scholar 

  • Kocik R (2009) Analyse und Bewertung der mechanisch-technologischen Eigenschaften von geschweissten Mischverbindungen aus Aluminium und Titan. Forschungsberichte aus der Stiftung Institut für Werkstofftechnik, Bremen, Bd. 46. Shaker, Aachen

    Google Scholar 

  • Kocik R, Vugrin T, Seefeld T (2006) Laserstrahlschweißen im Flugzeugbau: Stand und künftige Anwendungen. In: 5. Laser-Anwenderforum Bremen, BIAS-Verlag

    Google Scholar 

  • Kogel-Hollacher M, Schoenleber M, Bautze T et al (2016) Measurement and closed-loop control of the penetration depth in laser materials processing. In: 9th international conference on photonic technologies (LANE)

    Google Scholar 

  • Kou S (1987) Welding metallurgy. A Wiley Interscience publication, Wiley, New York

    Google Scholar 

  • Kreimeyer M, Vollertsen F (2005) Processing titanium-aluminum hybrid joints for aircraft applications. In: Proceedings of the third international WLT-conference on lasers in manufacturing 2005, LiM2005, Munich

    Google Scholar 

  • Kreimeyer M, Wagner F, Zerner I et al (2001) Laser beam joining of aluminium with titanium with the use of an adapted working head. In: DVS-Berichte, vol 212. Verlag für Schweißen und verwandte Verfahren, DVS-Verlag, pp 317–321

    Google Scholar 

  • Kreimeyer M, Wagner F, Vollertsen F (2005) Laser processing of aluminum-titanium-tailored blanks. Opt Lasers Eng 43(9):1021–1035. https://doi.org/10.1016/j.optlaseng.2004.07.005

    Article  Google Scholar 

  • Kutsuna M, Shido K, Okada T (2002) Fan shaped cracking test of aluminum alloys in laser welding. In: Miyamoto I, Kobayashi KF, Sugioka K et al (eds) LAMP 2002: international congress on laser advanced materials processing. SPIE, p 230

    Google Scholar 

  • Lin R, Wang H-P, Lu F et al (2017) Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys. Int J Heat Mass Transf 108:244–256. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.019

    Article  CAS  Google Scholar 

  • Liu W, Tian X, Zhang X (1996) Preventing weld hot cracking by synchronous rolling during welding. Weld J 75(9):297.s–304.s

    Google Scholar 

  • Ma Z, Zhao W, Yan J et al (2011) Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti6Al4V and Al4Cu1Mg. Ultrason Sonochem 18(5):1062–1067. https://doi.org/10.1016/j.ultsonch.2011.03.025

    Article  CAS  Google Scholar 

  • Maina MR, Okamoto Y, Okada A et al (2018) High surface quality welding of aluminum using adjustable ring-mode fiber laser. J Mater Process Technol 258:180–188. https://doi.org/10.1016/j.jmatprotec.2018.03.030

    Article  CAS  Google Scholar 

  • Majumdar B, Galun R, Weisheit A et al (1997) Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser. J Mater Sci 32:6191–6200

    Article  CAS  Google Scholar 

  • Martin B, Loredo A, Pilloz M et al (2001) Characterisation of cw Nd: YAG laser keyhole dynamics. Opt Laser Technol 33(4):201–207. https://doi.org/10.1016/S0030-3992(01)00014-7

    Article  CAS  Google Scholar 

  • Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann Manuf Technol 64(2):679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  • Marya M, Marya S, Priem D (2005) On the characteristics of electromagnetic welds between aluminium and other metals and alloys. Weld World 49(5/6):74–84

    Article  CAS  Google Scholar 

  • Mathers G (2002) The welding of aluminium and its alloys. CRC Press, Boca Raton

    Book  Google Scholar 

  • Matsuda F, Nakata K, Nishio Y et al (1986) Effect of zirconium addition on improvement of solidification crack susceptibility of Al-Zn-Mg alloy weld—fundamental research on solidification crack susceptibility of Al-Zn-Mg alloy weld (Report 1). Q J Jpn Weld Soc 4(1):115–120. https://doi.org/10.2207/qjjws.4.115

    Article  CAS  Google Scholar 

  • Matsunawa A, Seto N, Kim J-D et al (eds) (2000) Dynamics of keyhole and molten pool in high-power CO2 laser welding, 3888 IS

    Google Scholar 

  • McCartney DG (1989) Grain refining of aluminium and its alloys using inoculants. Int Mater Rev 34(1):247–260. https://doi.org/10.1179/imr.1989.34.1.247

    Article  CAS  Google Scholar 

  • Messaoudia H, Mehrafsun S, Schrauf G et al (2015) Highly reproducible laser micro drilling of titanium-based HLFC sections. In: Lasers in manufacturing, Munich, Germany

    Google Scholar 

  • Miriyev A, Levy A, Kalabukhov S et al (2016) Interface evolution and shear strength of Al/Ti bi-metals processed by a spark plasma sintering (SPS) apparatus. J Alloys Compd 678:329–336. https://doi.org/10.1016/j.jallcom.2016.03.137

    Article  CAS  Google Scholar 

  • Mittelstädt C, Seefeld T, Woizeschke P et al (2018) Laser welding of hidden T-joints with lateral beam oscillation. Procedia CIRP 74:456–460. https://doi.org/10.1016/j.procir.2018.08.151

    Article  Google Scholar 

  • Miyamoto (1997) Laser welding (2)—welding of thick plate. In: Proceedings of the 41st laser materials processing conference, pp 21–34

    Google Scholar 

  • Möller F, Thomy C, Vollertsen F et al (2010) Novel method for joining CFRP to aluminium. In: Laser assisted net shape engineering 6, Proceedings of the LANE 2010, Part 2 5, pp 37–45. https://doi.org/10.1016/j.phpro.2010.08.027

    Article  Google Scholar 

  • Möller F, Thomy C, Vollertsen F (2012) Joining of titanium-aluminium seat tracks for aircraft applications—system technology and joint properties. Weld World 56(3–4):108–114. https://doi.org/10.1007/BF03321341

    Article  Google Scholar 

  • Nakashiba S, Okamoto Y, Sakagawa T et al (2011) Welding characteristics of aluminum alloy by pulsed Nd:YAG laser with pre- and post-irradiation of superposed continuous diode laser. In: Proceedings of international congress on applications of lasers and electro optics (ICALEO), #M205

    Google Scholar 

  • Nesterov AF, Trubitsin AP, Prokhorov AN (1990) Special features of resistance welding titanium to aluminium. Weld Int 4(6):464–466. https://doi.org/10.1080/09507119009447761

    Article  Google Scholar 

  • Ono M, Shiozaki T, Shinbo Y et al (2001) Development of high power laser pipe welding process. Q J Jpn Weld Soc 19(2):233–240. https://doi.org/10.2207/qjjws.19.233

    Article  CAS  Google Scholar 

  • Ostermann F (1998) Anwendungstechnologie Aluminium. VDI-Buch. Springer, Berlin

    Book  Google Scholar 

  • Palm F (2000) Bericht aus der Werkstoff-Forschung der DaimlerChryslerAG in Ottobrunn zum Schweißen im Flugzeugbau. In: DVS-Berichte, vol 208. DVS-Media, pp 53–58

    Google Scholar 

  • Ploshikhin V, Prikhodovsky A, Makhutin M et al (2004) Rechnergestützte Entwicklung der Verfahren zum rissfreien Laserstrahlschweißen. NMB Bayreuth

    Google Scholar 

  • Ploshikhin V, Prikhodovski A, Ilin A et al (2007) Computer aided development of the crack-free laser welding processes. Key Eng Mat 353–358:1984–1994. https://doi.org/10.4028/www.scientific.net/KEM.353-358.1984

    Article  Google Scholar 

  • Pretorius T, Kreimeyer M, Sepold G et al (2004) Simulation of laser beam welded aluminium joints. In: Proceedings of 14th international conference on computer technology in welding and manufacturing

    Google Scholar 

  • Radaj D (1992) Heat effects of welding: temperature field, residual stress, distortion. Springer, Berlin

    Book  Google Scholar 

  • Radel T (2018) Mechanical manipulation of solidification during laser beam welding of aluminum. Weld World 62(1):29–38. https://doi.org/10.1007/s40194-017-0530-1

    Article  CAS  Google Scholar 

  • Radel T, Woizeschke P (2018) Reduction of hot cracking susceptibility during laser welding of aluminum by vibrations. Weld World 41(1):164. https://doi.org/10.1007/s40194-018-00680-2

    Article  CAS  Google Scholar 

  • Radscheit CR (1997) Laserstrahlfügen von Aluminium mit Stahl. Dissertation. Strahltechnik, Bd. 4. BIAS-Verlag, Bremen

    Google Scholar 

  • Reitemeyer D (2012) Stabilisierung der Fokuslage beim Schweißen mit Faser- und Scheibenlasern. Zugl.: Bremen, Univ., Dissertation. Strahltechnik, Bd. 49. BIAS-Verlag, Bremen

    Google Scholar 

  • Reitemeyer D, Seefeld T, Vollertsen F et al (2009) Influences on the laser induced focus shift in high power fiber laser welding. Lasers Manuf (LiM):293–298

    Google Scholar 

  • Reitemeyer D, Seefeld T, Vollertsen F (2010) Online focus shift measurement in high power fiber laser welding. Phys Procedia 5:455–463. https://doi.org/10.1016/j.phpro.2010.08.073

    Article  Google Scholar 

  • Reitemeyer D, Schultz V, Syassen F et al (2013) Laser welding of large scale stainless steel aircraft structures. Lasers Manuf (LiM) 41:106–111. https://doi.org/10.1016/j.phpro.2013.03.057

    Article  Google Scholar 

  • Reitz V, Meinhard D, Ruck S et al (2017) A comparison of IR- and UV-laser pretreatment to increase the bonding strength of adhesively joined aluminum/CFRP components. Compos A Appl Sci Manuf 96:18–27. https://doi.org/10.1016/j.compositesa.2017.02.014

    Article  CAS  Google Scholar 

  • Russell JD (1997) Application of laser welding in shipyards. In: Beckmann LHJF (ed) Lasers and optics in manufacturing III. SPIE, pp 174–183

    Google Scholar 

  • Scaggs M, Haas G (2010). Thermal lensing compensation objective for high power lasers. International Congress on Applications of Lasers & Electro-Optics (ICALEO2010), pp 1511–1517. https://doi.org/10.2351/1.5062011

  • Schempp P, Cross CE, Schwenk C et al (2012) Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082. Weld World 56(9):95–104. https://doi.org/10.1007/BF03321385

    Article  CAS  Google Scholar 

  • Schempp P, Cross CE, Häcker R et al (2013) Influence of grain size on mechanical properties of aluminium GTA weld metal. Weld World 57(3):293–304. https://doi.org/10.1007/s40194-013-0026-6

    Article  CAS  Google Scholar 

  • Schneider A, Avilov V, Gumenyuk A et al (2013) Laser beam welding of aluminum alloys under the influence of an electromagnetic field. Lasers Manuf (LiM) (41):4–11. https://doi.org/10.1016/j.phpro.2013.03.045

    Article  CAS  Google Scholar 

  • Schoer H (1980) Über das Schweißrissigkeitsverhalten von Aluminiumwerkstoffen. Metall 34(6):546–551

    CAS  Google Scholar 

  • Schrauf G (2005) Status and perspectives of laminar flow. Aeronaut J 109(1102):639–644. https://doi.org/10.1017/S000192400000097X

    Article  Google Scholar 

  • Schubert E, Zerner I, Sepold G et al (1997) Laser beam joining of material combinations for automotive applications. In: Beckmann LHJF (ed) Lasers and optics in manufacturing III. SPIE, pp 212–221

    Google Scholar 

  • Schubert E, Klassen M, Skupin J et al (1998) Effect of filler wire on process stability in laser beam welding of aluminium-alloys. In: Proceedings of the 6th international conference on welding and melting by electron and laser beams (CISFFEL), pp 195–204

    Google Scholar 

  • Schultz V, Seefeld T (2015) Schlussbericht - Strahlmodulation beim Schweißen mit hoch fokussierenden Festkörperlasern mit Zusatzwerkstoff (Spaltüberbrückbarkeit), IGF-Vorhaben 17.558N

    Google Scholar 

  • Schultz V, Woizeschke P (2018) High seam surface quality in keyhole laser welding: buttonhole welding. J Manuf Mater Process (JMMP) 2(4):78. https://doi.org/10.3390/jmmp2040078

    Article  CAS  Google Scholar 

  • Schultz V, Seefeld T, Vollertsen F (2014a) Gap bridging ability in laser beam welding of thin aluminum sheets. Phys Procedia 56:545–553. https://doi.org/10.1016/j.phpro.2014.08.037. 8th International conference on laser assisted net shape engineering LANE 2014

    Article  CAS  Google Scholar 

  • Schultz V, Thomy C, Vollertsen F et al (2014b) Development of a laser welding and straightening process for aircraft structures for hybrid laminar flow control. In: IIW annual assembly: Doc. no. IV-1180-14

    Google Scholar 

  • Schultz V, Cho W-I, Woizeschke P et al (2017a) Laser deep penetration weld seams with high surface quality. In: Overmeyer L, Reisgen U, Ostendorf A, Schmidt M (eds) Lasers in manufacturing (LiM2017). USB stick

    Google Scholar 

  • Schultz V, Stephen A, Kalms M et al (2017b) Laser ermöglichen die Fertigung kraftstoffsparender Flugzeugstrukturen. Laser Magazin 5:23–24

    Google Scholar 

  • Schulze G (2010) Die Metallurgie des Schweissens: Eisenwerkstoffe—nichteisenmetallische Werkstoffe, 4., neu bearbeitete Aufl. VDI-Buch. Springer, Heidelberg

    Book  Google Scholar 

  • Schumacher J (2002) Erfahrungen bei der Serieneinführung für Laserstrahlschweißen im Flugzeugbau. In: 4. Laser-Anwenderforum. BIAS Verlag, Bremen, pp 247–256

    Google Scholar 

  • Schumacher J, Irretier A, Kocik R et al (2007) Investigation of laser-beam joined titanium-aluminum hybrid structures. In: Applied production technology APT’07, pp 149–160

    Google Scholar 

  • Schumacher J, Clausen B, Zoch H-W (2014) Strength and failure behaviour of carbon fibre reinforced plastics (CFRP)-aluminium seam structures. Mat.-wiss. u. Werkstofftech 45(12):1108–1115. https://doi.org/10.1002/mawe.201400359

    Article  CAS  Google Scholar 

  • Semiatin SL, Seetharaman V, Weiss I (1998) Hot workability of titanium and titanium aluminide alloys—an overview. Mater Sci Eng A 243(1-2):1–24. https://doi.org/10.1016/S0921-5093(97)00776-4

    Article  Google Scholar 

  • Seto N, Katayama S, Matsunawa A (2001) Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys. Weld Int 15(3):191–202. https://doi.org/10.1080/09507110109549341

    Article  Google Scholar 

  • Shi P, Wan P (2016) Numerical simulation of formation process of keyhole-induced pore for laser deep penetration welding. In: International conference on advanced electronic science and technology (AEST), pp 368–373

    Google Scholar 

  • Skoda P, Dujak J, Michalicka P (op. 1996) Creation of heterogeneous weld joints of titanium- and aluminium-based materials by electron beam welding. In: Welding science & technology: Japan—Slovak welding symposium: proceedings of the international welding conference, 5–7 March 1996. Faculty of Metallurgy, Department of Materials Science, Košice, pp 157–160

    Google Scholar 

  • Song Z, Nakata K, Wu A et al (2013) Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove. Mater Sci Eng A 560(0):111–120. https://doi.org/10.1016/j.msea.2012.09.044

    Article  CAS  Google Scholar 

  • Specht U (2015) Untersuchungen zur Entstehung laserinduzierter nanoporöser Strukturen auf Titanoberflächen für langzeitstabile Klebungen. Dissertation. University of Bremen

    Google Scholar 

  • Specht U, Ihde J, Mayer B (2014) Laser induced nano-porous Ti–O-layers for durable titanium adhesive bonding. Mat.-wiss. u. Werkstofftech 45(12):1116–1122. https://doi.org/10.1002/mawe.201400360

    Article  CAS  Google Scholar 

  • Sun Z, Kuo M (1999) Bridging the joint gap with wire feed laser welding. J Mater Process Technol 87(1):213–222. https://doi.org/10.1016/S0924-0136(98)00346-X

    Article  Google Scholar 

  • Takemoto T, Nakamura H, Okamoto I (1990) Aluminum brazing filler metals for making aluminum to titanium joints in a vacuum (physics, process, instrument & measurement). Trans JWRI 19(1):39–44

    CAS  Google Scholar 

  • Tang Z (2014) Heißrissvermeidung beim Schweißen von Aluminiumlegierungen mit einem Scheibenlaser. Dissertation. Strahltechnik, Bd. 53. BIAS Verlag

    Google Scholar 

  • Tang Z, Vollertsen F (2014) Influence of grain refinement on hot cracking in laser welding of aluminum. Weld World 58(3):355–366. https://doi.org/10.1007/s40194-014-0121-3

    Article  CAS  Google Scholar 

  • Thomy C, Vollertsen F (2007) Hybrid Welding of thin sheet material with single-mode fibre laser. In: Proceedings of the IIW International Institute of Welding Commission XII intermediate meeting, IIW Doc. Nr. XII-1912-07 (CD)

    Google Scholar 

  • Tomashchuk I, Sallamand P, Cicala E et al (2015) Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V. J Mater Process Technol 217:96–104. https://doi.org/10.1016/j.jmatprotec.2014.10.025

    Article  CAS  Google Scholar 

  • Tsukamoto S, Kawaguchi I, Honda H et al (2001) Suppression of porosity using pulse modulation of laser power in 20kW laser welding. In: Proceedings of the 20th international congress on applications of lasers and electro-optics (ICALEO), pp D607–D615

    Google Scholar 

  • Vollertsen F (2009) Properties and prospects of high brightness solid state lasers. LTJ 6(5):27–31. https://doi.org/10.1002/latj.200990071

    Article  Google Scholar 

  • Vollertsen F, Neumann S (2009) High brightness solid state laser: development and application. In: Proceedings of the 5th international congress on laser advanced material processing LAMP09, #317

    Google Scholar 

  • Vollertsen F, Woizeschke P, Schultz V et al (2017) Developments for laser joining with high-quality seam surfaces. Lightw Des Worldw 10(5):6–13. https://doi.org/10.1007/s41777-017-0041-1

    Article  Google Scholar 

  • Volpp J (2017) Dynamik und Stabilität der Dampfkapillare beim Laserstrahltiefschweißen. Dissertation. Strahltechnik, Bd. 63. BIAS Verlag

    Google Scholar 

  • Volpp J, Srowig J, Vollertsen F (2016) Spatters during laser deep penetration welding with a bifocal optic. AMR 1140:123–129. https://doi.org/10.4028/www.scientific.net/AMR.1140.123

    Article  Google Scholar 

  • Wang H, Vivek A, Wang Y et al (2016) Laser impact welding application in joining aluminum to titanium. J Laser Appl 28(3):32002. https://doi.org/10.2351/1.4946887

    Article  CAS  Google Scholar 

  • Wilden J, Bergmann JP (2004) Manufacturing of titanium/aluminium and titanium/steel joints by means of diffusion welding. Weld Cut 3:285–290

    Google Scholar 

  • Wilden J, Neumann T (2010) Moderne Strahlquellen im Einsatz – Welche metallurgischen Ansätze ergeben sich? In: Strahlschweißen von Aluminium. DVS-Media, Düsseldorf, pp 39–44

    Google Scholar 

  • Wilden J, Bergmann JP, Reich S et al (2007a) Grundlegende Untersuchungen zum flussmittelfreien Löten von Leichtmetall-Material-Mix Konstruktionen

    Google Scholar 

  • Wilden J, Bergmann JP, Holtz R et al (2007b) Einsatz von gepulsten Nd:YAG-Lasern für das Fügen von Werkstoffen und Werkstoffkombinationen mit anspruchsvollen Eigenschaften

    Google Scholar 

  • Woizeschke P (2017) Eigenschaften laserstrahlgefügter Mischverbindungen aus Aluminium und Titan in Abhängigkeit der Kantengeometrie und Halbzeugstruktur. Dissertation, University of Bremen, Strahltechnik, Bd. 65, Bremen, urn:nbn:de:gbv:46-00106005-12

    Google Scholar 

  • Woizeschke P, Vollertsen F (2014) Distortion effects in deep penetration laser micro welding: challenges and results. Lasers Eng 28(5-6):337–359

    CAS  Google Scholar 

  • Woizeschke P, Vollertsen F (2015) Fracture analysis of competing failure modes of aluminum-CFRP joints using three-layer titanium laminates as transition. J Mater Eng Perform 24(9):3558–3572. https://doi.org/10.1007/s11665-015-1638-3

    Article  CAS  Google Scholar 

  • Woizeschke P, Vollertsen F (2016) A strength-model for laser joined hybrid aluminum–titanium transition structures. CIRP Ann Manuf Technol 65(1):241–244. https://doi.org/10.1016/j.cirp.2016.04.027

    Article  Google Scholar 

  • Woizeschke P, Vollertsen F (2018) Joining of aluminum to titanium sheets/ laminates for aluminum-CFRP transitions. In: Herrmann AS (ed) Outcome of the research unit FOR1224: CFRP-Al transition structures in lightweight constructions: “Schwarz-Silber”. BoD, Norderstedt, pp 31–76

    Google Scholar 

  • Woizeschke P, Wottschel V (2013) Recent developments for laser beam joining of CFRP-aluminum structures. materials science engineering, symposium B6—hybrid structures. Procedia Mater Sci 2:250–258. https://doi.org/10.1016/j.mspro.2013.02.031

    Article  CAS  Google Scholar 

  • Woizeschke P, Mosgowoi E, Vollertsen F (2015) Decreasing pore formation in multiple-sheet laser joining with interfacial polymeric contaminations. Weld World 59(5):683–692. https://doi.org/10.1007/s40194-015-0244-1

    Article  CAS  Google Scholar 

  • Woizeschke P, Kügler H, Vollertsen F (2016a) Bewerten und Vergleichen der Spaltüberbrückbarkeit unterschiedlicher thermischer Fügeverfahren—Der Benchmark-Spalt. Der Praktiker 8:356–358

    Google Scholar 

  • Woizeschke P, Schultz V, Messaoudia H et al (2016b) Laser processing of lightweight aircraft structures. (Keynote). In: Proceedings of the 84th laser materials processing conference, Japan Laser Processing Society (JLPS), pp 21–26

    Google Scholar 

  • Woizeschke P, Radel T, Nicolay P et al (2017) Laser deep penetration welding of an aluminum alloy with simultaneously applied vibrations. Lasers Manuf Mater Process 4(1):1–12. https://doi.org/10.1007/s40516-016-0032-9

    Article  Google Scholar 

  • Xie J (2002) Dual beam laser welding. Weld J 81(10):223–230

    Google Scholar 

  • Yamaguchi M, Umakoshi Y, Yamane T (1987) Plastic deformation of the intermetallic compound Al3Ti. Philos Mag A 55(3):301–315. https://doi.org/10.1080/01418618708209869

    Article  CAS  Google Scholar 

  • Yamaguchi M, Inui H, Ito K (2000) High-temperature structural intermetallics. Acta Mater 48(1):307–322. https://doi.org/10.1016/S1359-6454(99)00301-8

    Article  CAS  Google Scholar 

  • Yang YP, Dong P, Zhang J et al (2000) A hot-cracking mitigation technique for welding high-strength aluminum alloy. Weld Res Suppl 9:17

    Google Scholar 

  • Young TM, Humphreys B, Fielding JP (2001) Investigation of hybrid laminar flow control (HLFC) surfaces. Aircr Des 4(2–3):127–146. https://doi.org/10.1016/S1369-8869(01)00010-6

    Article  Google Scholar 

  • Zerner I (2003) Sitzschiene(DE10360807B4). Accessed 18 Oct 2016

    Google Scholar 

  • Zhang J, Weckman DC, Zhou Y (2008) Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd:YAG laser welds. Weld Res 87:18–30

    Google Scholar 

  • Zhang X, He X, Xing B et al (2016) Influence of heat treatment on fatigue performances for self-piercing riveting similar and dissimilar titanium, aluminium and copper alloys. Mater Des 97:108–117. https://doi.org/10.1016/j.matdes.2016.02.075

    Article  CAS  Google Scholar 

  • Zhao H, DebRoy T (2003) Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. J Appl Phys 93(12):10089–10096. https://doi.org/10.1063/1.1573732

    Article  CAS  Google Scholar 

  • Zhu Z, Lee K, Wang X (2012) Ultrasonic welding of dissimilar metals, AA6061 and Ti6Al4V. Int J Adv Manuf Technol 59(5–8):569–574. https://doi.org/10.1007/s00170-011-3534-9

    Article  Google Scholar 

  • Zimmermann S, Specht U, Spieß L et al (2012) Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening. Mater Sci Eng A 558(0):755–760. https://doi.org/10.1016/j.msea.2012.08.101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank his current and former colleagues at the BIAS Institute in Bremen for their many years of cooperation and various support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Woizeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woizeschke, P. (2020). Laser Joining Processes for Lightweight Aircraft Structures. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_11

Download citation

Publish with us

Policies and ethics