Skip to main content

Emerging and Reemerging Bacterial Pathogens of Humans in Environmental and Hospital Settings

  • Chapter
  • First Online:
Current Microbiological Research in Africa

Abstract

This chapter reviews emerging and reemerging bacterial pathogens in environmental and hospital settings and that are either endemic, epidemic, or have caused sporadic outbreaks or have shown increased prevalence in clinical cases in Africa in recent times. In Africa, bacterial pathogens like Campylobacter, Arcobacter, Aeromonas hydrophila, and Plesiomonas shigelloides have become critical clinical pathogens on the watch list for their increased incidence in clinical cases, ubiquity in the environment, and heightened exposure risk. Increased and consistent antibiotic resistance observed with Mycobacterium tuberculosis hampers treatment options and promotes the circulation of this pathogen, making it a reemerging pathogen of concern. Vibrio cholerae O1, Listeria monocytogenes, and Neisseria meningitidis are endemic in Africa and have historically been responsible for severe health concerns in African countries, despite numerous interventions initiated to control their increase and spread. They cause severe health and economic burdens in many African countries, influenced by socioeconomic, environmental/ecological, pathogen (evolution and the development of drug resistance), and human factors. In Africa, prevention and control strategies for these emerging pathogens are hampered by inequalities in necessary infrastructure (waste disposal and water supply), healthcare provision, environmental conditions, hygiene practices, sanitary conditions, and lack of epidemiological data due to inadequate surveillance and investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuhammour W, Hasan RA, Rogers D (2006) Necrotizing fasciitis caused by Aeromonas hydrophilia in an immunocompetent child. Pediatr Emerg Care 22:48–51. https://doi.org/10.1097/01.pec.0000195755.66705.f8

    Article  PubMed  Google Scholar 

  • Aguilera-Arreola MG, Hernández-Rodríguez C, Zúñiga G et al (2007) Virulence potential and genetic diversity of Aeromonas caviae, Aeromonas veronii, and Aeromonas hydrophila clinical isolates from Mexico and Spain: a comparative study. Can J Microbiol 53:877–887

    Article  CAS  PubMed  Google Scholar 

  • Ajayeoba TA, Atanda OO, ObadinaAdewale O et al (2016) The incidence and distribution of Listeria monocytogenes in ready-to-eat vegetables in South-Western Nigeria. Food Sci Nutr 4(1):59–66

    Article  PubMed  Google Scholar 

  • Aldova E (2000) New serovars of Plesiomonas shigelloides: 1992-1998. Cent Eur J Public Health 8:150–151

    CAS  PubMed  Google Scholar 

  • Ali AV, Parissa F (2012) Morphological characterisation of Mycobacterium tuberculosis. In: Cardona P-J (ed) Understanding tuberculosis-deciphering the secret life of the bacilli, p 334. InTech Open Science. http://cdn.intechopen.com/pdfs/28419/InTech-Morphological_characterization_of_mycobacterium_tuberculosis.pdf

    Google Scholar 

  • Almeida PF, Almeida RC (2000) A PCR protocol using inl gene as a target for specific detection of Listeria monocytogenes. Food Control 11:97–101

    Article  CAS  Google Scholar 

  • Andersen MME, Wesley IV, Nestor E, Trampe DW (2007) Prevalence of Arcobacter species in market-weight commercial turkeys. Antonie Van Leeuwenhoek 92:309–317

    Article  PubMed  Google Scholar 

  • Arai T, Ikejima N, Shimada T, Sakazaki R (1980) A survey of Plesiomonas shigelloides from aquatic environments, domestic animals, pets and humans. J Hyg 84:203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson-Olsson D, Waldenstrom J, Broman T et al (2005) Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni. Appl Environ Microbiol 71(2):987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aznar R, Alarcon B (2003) PCR detection of Listeria monocytogenes: a study of multiple factors affecting sensitivity. J Appl Microbiol 95(5):958–966

    Article  CAS  PubMed  Google Scholar 

  • Banting GS, Braithwaite S, Scott C et al (2016) Evaluation of various Campylobacter-specific quantitative PCR (qPCR) assays for detection and enumeration of Campylobacteraceae in irrigation water and wastewater via a miniaturized most-probable-number–qPCR assay. Appl Environ Microbiol 82(15):4743–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banting G, Figueras Salvat, MJ (2017) Arcobacter. In: J.B. Rose and B. Jiménez-Cisneros, (eds) Global water pathogens project. http://www.waterpathogens.org (J.S Meschke, and R. Girones (eds) Part 3 Viruses) http://www.waterpathogens.org/book/arcobacter Michigan State University, E. Lansing, MI, UNESCO

    Google Scholar 

  • Barberis I, Bragazzi NL, Galluzo L, Martini M (2017) The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prevent Med Hyg 58(1):E9–E12

    CAS  Google Scholar 

  • Bentivoglio M, Pacini P (1995) Filippo Pacini: a determined observer. Brain Res Bull 38(2):161–165

    Article  CAS  PubMed  Google Scholar 

  • Berghaus RD, Thayer SG, Law BF et al (2013) Enumeration of Salmonella and Campylobacter spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks. Appl Environ Microbiol 7:4106–4114

    Article  CAS  Google Scholar 

  • Biamon EJ, Hazen TC (1983) Survival and distribution of Aeromonas hydrophila in near-shore coastal waters of Puerto Rico receiving rum distillery effluent. Water Res 17(3):319–326

    Article  Google Scholar 

  • Bogdanović R, Čobeljić M, Marković M et al (1991) Haemolytic-uraemic syndrome associated with Aeromonas hydrophila enterocolitis. Pediatr Nephrol 5(3):293–295

    Article  PubMed  Google Scholar 

  • Braga V, Vazquez S, Vico V et al (2017) Prevalence and serotype distribution of Listeria monocytogenes isolated from foods in Montevideo-Uruguay. Braz J Microbiol 48(4):689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull SA, Allen VM, Domingue G, Jorgensen F, Frost JA, Ure R, Whyte R, Tinker D, Corry JEL, Gillard-King J, Humphrey TJ (2006) Sources of Campylobacter spp. colonising housed broiler flocks during rearing. Appl Environ Microbiol 72(1):645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butzler JP (2004) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10(10):868–876

    Article  PubMed  Google Scholar 

  • Centres for Disease Control and Prevention (2018a) CDC features: tuberculosis (TB) disease: symptoms and risk factors. Retrieved October 29, 2018, from https://www.cdc.gov/features/tbsymptoms/index.html

  • Centres for Disease Control and Prevention (2018b) World TB Day: History of World TB Day. Retrieved October 29, 2018, from Centres for Disease Control and Prevention: https://www.cdc.gov/tb/worldtbday/history.htm

  • Chacón MR, Figueras MJ, Castro-Escarpulli G et al (2003) Distribution of virulence genes in clinical and environmental isolates of Aeromonas spp. Antonie Van Leeuwenhoek 84(4):269–278. https://doi.org/10.1023/A:1026042125243

    Article  PubMed  Google Scholar 

  • Chang H-H, Cohen T, Grad YH et al (2015) Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiol Mol Biol Rev 79(1):101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao C-M, Lai C-C Gau S-J, Hsueh P-R (2013) Skin and soft tissue infection caused by Aeromonas species in cancer patients. J Microbiol Immunol Infect 46(2):144–146

    Article  PubMed  Google Scholar 

  • Chen PL, Tsai PJ, Chen CS et al (2015) Aeromonas stool isolates from individuals with or without diarrhea in southern Taiwan: Predominance of Aeromonas veronii. J Microbiol Immunol Infect 48(6):618–624

    Article  PubMed  Google Scholar 

  • Chen X, Chen Y, Yang Q et al (2013) Plesiomonas shigelloides infection in Southeast China. PLoS One 8(11):e77877. https://doi.org/10.1371/journal.pone.007787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikeka I, Dimler JS (2015) Neglected bacterial zoonoses. Clin Microbiol Infect 21:404–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinivasagam HN, Corney BG, Wright LL et al (2007) Detection of Arcobacter spp. in piggery effluent and effluented irrigated soils in Southeast Queensland. J Appl Microbiol 103:418–426

    Article  CAS  PubMed  Google Scholar 

  • Chacón, M. R., Figueras, M. J., Castro-Escarpulli, G., Soler, L., & Guarro, J. (2003). Distribution of virulence genes in clinical and environmental isolates of Aeromonas spp. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 84(4), 269–278. https://doi.org/10.1023/A:1026042125243

    Article  PubMed  Google Scholar 

  • Clark CG, Price L, Ahmed R et al (2003) Characterisation of waterborne outbreak–associated Campylobacter jejuni, Walkerton, Ontario. Emerg Infect Dis 9(10):1232–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Coker AO, Isokpehi RD, Thomas BN et al (2002) Human campylobacteriosis in developing countries. Emerg Infect Dis 8(3):237–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Collado L, Inza I, Guarro J, Figueras MJ (2008) Presence of Arcobacter spp. in environmental waters correlates with high levels of faecal pollution. Environ Microbiol 10(6):1635–1640

    Article  PubMed  Google Scholar 

  • Collado L, Kasimir G, Perez U et al (2010) Occurrence and diversity of Arcobacter spp. along the Llobregat River catchment, at sewage effluents and in a drinking water treatment plant. Water Res 44:3696–3702

    Article  CAS  PubMed  Google Scholar 

  • Collado L, Figueras, MJ (2011) Taxonomy, Epidemiology, and Clinical Relevance of the Genus Arcobacter. Clin Microbiol Rev 24(1):174–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SJ, Fooks AR, van der Poel WHM (2010) Public health threat of new, reemerging and neglected zoonoses in industrialised world. Emerg Infect Dis 16(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahdouh B, Basha O, Khalil S, Tanekhy M (2016) Molecular characterization, antimicrobial susceptibility and salt tolerance of Aeromonas hydrophila from fresh, brackish and marine fishes. Alex J Vet Sci 48(2):46

    Google Scholar 

  • De R, Ghosh JB, Gupta SS et al (2013) The role of Vibrio cholerae genotyping in Africa. J Infect Dis 208(Suppl_1):S32–S38

    Article  PubMed  Google Scholar 

  • Devleesschauwer B, Havelaar AH, Maertens de Noordhout C et al (2014) Calculating disability-adjusted life years to quantify burden. Int J Public Health. https://doi.org/10.1007/s00038-014-0552-z

    Article  PubMed  Google Scholar 

  • Diergaardt SM, Venter SN, Chalmers M et al (2003) Evaluation of the Cape Town Protocol for the isolation of Campylobacter spp. from environmental waters. Water SA 29(2):225–229

    Article  Google Scholar 

  • Dingle KE, Colles FM, Wareing DRA, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJL, Urwin R, Maiden MCJ (2001) Multilocus Sequence Typing System for Campylobacter jejuni. J Clin Microbiol 39(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douidah L, de Zutter L, Baré J et al (2012) Occurrence of putative virulence genes in Arcobacter species isolated from humans and animals. J Clin Microbiol 50(3):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ertas N, Dogruer Y, Gonulalan Z et al (2010) Prevalence of Arcobacter species in drinking water, spring water, and raw milk as determined by multiplex PCR. J Food Prot 73(11):2099–2102

    Article  CAS  PubMed  Google Scholar 

  • Escobar JC, Bhavnani D, Trueba G et al (2012) Plesiomonas shigelloides infection, Ecuador, 2004–2008. Emerg Infect Dis 18(2):322–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Falcon R, Carbonell GV, Figueredo PMS et al (2003) Intracellular vacuolation induced by culture filtrates of Plesiomonas shigelloides isolated environmental sources. J Appl Microbiol 95(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • Farber JM, Ross WH, Harwig J (1996) Health risk assessment of Listeria monocytogenes in Canada. Int J Food Microbiol 30(1–2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Farmer JJ, Arduino MJ, Hickman-Brenner FW (2006) The genera Aeromonas and Plesiomonas. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, a handbook on the biology of bacteria. Proteobacteria: gamma subclass, vol 6, 3rd edn. Springer, New York, NY, pp 564–596

    Google Scholar 

  • Fera MT, Gugliandolo C, Lentini V et al (2010) Specific detection of Arcobacter spp. Lett Appl Microbiol 50:65–70

    Article  CAS  PubMed  Google Scholar 

  • Fernàndez-Sabé N, Cervera C, López-Medrano F et al (2009) Risk factors, clinical features, and outcomes of listeriosis in solid-organ transplant recipients: a matched case-control study. Clin Infect Dis 49(8):1153–1159

    Article  PubMed  Google Scholar 

  • Figueras MJ, Levican A, Pujol I et al (2014) A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter sp. and a review of the clinical incidence of Arcobacter spp. New Microbes New Infect 2(2):31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher JC, Newton RJ, Dila DK, McLellan SL (2015) Urban microbial ecology of a freshwater estuary of Lake Michigan. Elementa 3:1–14. https://doi.org/10.12952/journal.elementa.000064

    Article  Google Scholar 

  • Gallo MT, Di Domenico EG, Toma L et al (2016) Campylobacter jejuni fatal sepsis in a patient with Non-Hodgkin's lymphoma: Case report and literature review of a difficult diagnosis. Int J Mol Sci 17:544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glacometti F, Lucchi A, Manfreda G et al (2013) Occurrence and genetic diversity of Arcobacter butzleri in an artisanal dairy plant in Italy. Appl Environ Microbiol 79(21):6665–6669

    Article  CAS  Google Scholar 

  • Gonzalez-Rey C, Svenson SB, Eriksson LM, Ciznar I, Krovacek K (2003) Unexpected finding of the “tropical” bacterial pathogen Plesiomonas shigelloides from lake water north of the Polar Circle. Polar Biol 26:495–499

    Article  Google Scholar 

  • Goulet V, King LA Vaillant V, de Valk H (2013) What is the incubation period for listeriosis. BMC Infect Dis 13:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood B, Bradley AK, Wall RA (1985) Meningococcal disease and season in sub-Saharan Africa. Lancet 2:829–830

    Article  CAS  PubMed  Google Scholar 

  • Handa S (2017) Pediatrics: general medicine-cholera. In: Steele RW (eds) Retrieved October 12, 2018, from Medscape: https://emedicine.medscape.com/article/962643-overview#a2

  • Hasan O, Khan W, Jessar M et al (2018) Bone graft donor site infection with a rare organism, Aeromonas Hydrophila. A typical location, presentation and organism with 2 years follow-up. Case report. Int J Surg Case Rep 51:154–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill DJ, Griffiths NJ, Borodina E, Virji M (2010) Cellular and molecular biology of N. meningitidis colonization and invasive disease. Clin Sci 118(9):547–564

    Article  CAS  Google Scholar 

  • Hiransuthikul N, Tantisiriwat W, Lertutsahakul K et al (2005) Skin and soft-tissue infections among tsunami survivors in southern Thailand. Clin Infect Dis 41(10):e93–e96. https://doi.org/10.1086/497372

    Article  PubMed  Google Scholar 

  • Hoel S, Vadstein O, Jakobsen AN (2017) Species distribution and prevalence of putative virulence factors in Mesophilic Aeromonas spp. isolated from fresh retail sushi. Front Microbiol 8:931. https://doi.org/10.3389/fmicb.2017.00931

    Article  PubMed  PubMed Central  Google Scholar 

  • Houf K, De Zutter L, Van Hoof J, Vandamme P, (2002) Occurrence and Distribution of Arcobacter Species in Poultry Processing. J Food Prot 65(8):1233–1239

    Article  PubMed  Google Scholar 

  • Hoogenboezem W (2007) Influences of sewage treatment plant effluents on the occurrence of emerging waterborne pathogens in surface water, July 2007. http://www.riwa-rijn.org/wp-content/uploads/2015/05/146_WWTP_pathogens.pdf

  • Hooper DC (2001) Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7(2):337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horman A, Rimhanen-Finne R, Maunula L et al (2004) Campylobacter spp., Giardia spp., Cryptosporidium spp., noroviruses, and indicator organisms in surface water in Southwestern Finland, 2000-2001. Appl Environ Microbiol 70(1):87–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MJ, Sun D, McGarey DJ et al (2014) An asian origin of virulent Aeromonas hydrophila responsible for disease epidemics in united states-farmed catfish. MBio 5(3):e00848–e00814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houf K, De Smet S, Bare J, Daminet S (2008) Dogs as carriers of the emerging pathogen Arcobacter. Vet Microbiol 130(1/2):208–213

    Article  CAS  PubMed  Google Scholar 

  • Houf K, On SLW, Coenye T et al (2005) Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int J Syst Evol Microbiol 55:713–717

    Article  CAS  PubMed  Google Scholar 

  • Howard-Jones N (1984) Robert Koch and the cholera vibrio: a centenary. Br Med J 288:379–381

    Article  CAS  Google Scholar 

  • Huang J, Zhu Y, Wen H et al (2012) Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5(3):263–267

    Article  Google Scholar 

  • Huang Y-T, Chen S-U, Wu M-Z et al (2006) Molecular evidence for vertical transmission of listeriosis, Taiwan. J Med Microbiol 55:1601–1603

    Article  PubMed  Google Scholar 

  • Huq A, Haley BJ, Taviani E et al (2013) Detection, Isolation, and Identification of Vibrio cholerae from the Environment. Cur Protoc Microbiol. https://doi.org/10.1002/9780471729259.mc06a05s26

  • Igbinosa IH, Igumbor EU, Aghdasi F et al (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J:625023. https://doi.org/10.1100/2012/625023

    Google Scholar 

  • Jakopanec I, Borgenk VL, Lund H et al (2008) A large waterborne outbreak of campylobacteriosis in Norway: the need to focus on distribution system safety. BMC Infect Dis 8:128. https://doi.org/10.1186/1471-2334-8-128

    Article  PubMed  PubMed Central  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23(1):35–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen AK, Bjorkman JT, Ethelberg S et al (2016) Molecular typing and epidemiology of human listeriosis cases, Denmark, 2002–2012. Emerg Infect Dis 22(4):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, DuPont HL, Brown EL et al (2010) Microbial etiology of travelers’ diarrhea in Mexico, Guatemala, and India: importance of enterotoxigenic Bacteroides fragilis and Arcobacter species. J Clin Microbiol 48(4):1417–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • JotScroll (2017) Mycobacterium tuberculosis morphology, characteristics, acid fast stain and culture media. Retrieved from JotScroll: http://www.jotscroll.com/forums/11/posts/159/mycobacterium-tuberculosis-morphology-acid-fast-stain-characteristics.html

  • Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28(3):687–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kain KC, Kelly MT (1989) Clinical features, epidemiology, and treatment of Plesiomonas shigelloides diarrhea. J Clin Microbiol 27(5):998–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kali A, Kalaivani R, Charles P, Seetha KS (2016) Aeromonas hydrophila meningitis and fulmiant sepsis in preterm newborn: a case report and review of literature. Indian J Med Microbiol 34(4):544–547

    Article  CAS  PubMed  Google Scholar 

  • Kassa T, Gebre-selassie S, Asrat D (2005) The prevalence of thermotolerant Campylobacter species in food animals in Jimma Zone, Southwest Ethiopia. Ethiop J Health Dev 19(3):225–229

    Google Scholar 

  • Keddy KH. Sooka A, Parsons MB, et al (2013) Diagnosis of Vibrio cholerae O1 Infection in Africa J Infect Dis 208(Suppl_1):S23-S31.

    Article  CAS  PubMed  Google Scholar 

  • Kemp R, Leatherbarrow AJH, Williams NJ et al (2005) Prevalence and genetic diversity of Campylobacter spp. in environmental water samples from a 100-square-kilometer predominantly dairy farming area. Appl Environ Microbiol 71(4):1876–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan IU, Hill S, Nowak E, Edge AT (2013a) Effect of incubation temperature on the detection of thermophilic Campylobacter species from freshwater beaches, nearby wastewater effluents, and bird fecal droppings. Appl Environ Microbiol 79(24):7639–7645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan IUH, Hill S, Nowak E et al (2013b) Investigation of the prevalence of thermophilic Campylobacter species at Lake Simcoe recreational beaches. Inland Waters 3:93–104

    Article  Google Scholar 

  • Khor WC, Puah SM, Tan JA et al (2015) Phenotypic and genetic diversity of Aeromonas species isolated from fresh water lakes in Malaysia. PLoS One 10(12):e0145933. https://doi.org/10.1371/journal.pone.0145933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Oh E, Banting GS et al (2016) An improved culture method for selective isolation of Campylobacter jejuni from wastewater. Front Microbiol 7:1345

    PubMed  PubMed Central  Google Scholar 

  • Kist M (1986) Who discovered Campylobacter jejuni/coli? A review of hitherto disregarded literature. Zentralbl Bakteriol Mikrobiol Hyg A 261(2):177–186

    CAS  PubMed  Google Scholar 

  • Knobler S, Mahmoud A, Lemon S, Pray L (2006) A world in motion: the global movement of people, products, pathogens, and power. In: Knobler S, Mahmoud A, Lemon S, Pray L (eds) The impact of globalization on infectious disease emergence and control: exploring the consequences and opportunities: Workshop Summary. The NAtional Academic Press, Washighton, DC, p 228. (21–48)

    Google Scholar 

  • Korczak BM, Zurfluh M, Emler S et al (2009) Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J Clin Microbiol 47(7):1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan PSL, Barrigas M, Bolton FJ et al (2008) Molecular epidemiology of Campylobacter jejuni populations in dairy cattle, wildlife, and the environment in a farmland area. Appl Environ Microbiol 74(16):5130–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Rosa G, Fontana S, Di Grazia A et al (2007) Molecular identification and genetic analysis of norovirus genogroups I and II in water environments: Comparative analysis of different reverse transcription-PCR assays. Appl Environ Microbiol 73(13):4152–4161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • La Rosa G, Fratini M, Libera SD, Iaconelli M, Muscillo M (2012) Emerging and potentially emerging viruses in water environments. Ann Ist Super Sanita 48(4):397–406

    Google Scholar 

  • Lang P, Lefebure T, Wang W et al (2010) Expanded multilocus sequence typing and comparative genomic hybridization of Campylobacter coli isolates from multiple hosts. Appl Environ Microbiol 72(6):1913–1925

    Article  CAS  Google Scholar 

  • Lau S, Woo P, Teng J, Leung K, Yuen K (2002) Identification by 16s ribosomal DNA gene sequencing of Arcobacter butzleri bacteraemia in a patient with acute gangrenous appendicitis. Mol Pathol 55:182–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Agidi S, Marion JW, Lee J (2012) Arcobacter in Lake Erie beach waters: An emerging gastrointestinal pathogen linked with human-associated fecal contamination. Appl Environ Microbiol 78(16):5511–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengerh A, Moges F, Unakal C, Anagaw B (2013) Prevalence, associated risk factors and antimicrobial susceptibility pattern of Campylobacter species among under five diarrheic children at Gondar University Hospital, Northwest Ethiopia. BMC Paediatr 13:82–90

    Article  Google Scholar 

  • Levesque S, Fournier E, Carrier N et al (2013) Campylobacteriosis in urban versus rural areas: A case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection. PLoS One 8(12):e83731. https://doi.org/10.1371/journal.pone.008373

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Ryu H, Vogel J, Domingo JS, Ashbolt NJ (2013) Molecular Detection of Campylobacter spp. And Fecal Indicator Bacteria during the Northern Migration of Sandhill Cranes (Grus canadensis) at the Central Platte River. Appl Environ Microbiol 79(12):3762–3769 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wang W, Zhu Z et al (2015) Distribution, virulence-associated genes and antimicrobial resistance of Aeromonas isolates from diarrheal patients and water, China. J Infect 70(6):600–608

    Article  PubMed  Google Scholar 

  • Lippi D, Gotuzzo E (2014) The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 20(3):191–195

    Article  CAS  PubMed  Google Scholar 

  • Lorber B (1997) Listeriosis. Clin Infect Dis 24:1–9

    Article  CAS  PubMed  Google Scholar 

  • Louten J (2016) Chapter 16 – Emerging and re-emerging viral diseases. In: Louten J (ed) Essential human virology. Academic Press, Kennesaw, GA, pp 291–310. https://doi.org/10.1016/B978-0-12-800947-5.00016-8

    Chapter  Google Scholar 

  • Low JC, Donachie W (1997) A review of Listeria monocytogenes and listeriosis. Vet J 153(1):9–29

    Article  CAS  PubMed  Google Scholar 

  • Lyon WJ (2001) aqMan PCR for detection of Vibrio cholerae O1, O139, Non-O1, and Non-O139 in pure cultures, raw oysters, and synthetic seawater. Appl Environ Microbiol 67(10):4685–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald E, White R, Mexia R et al (2015) Risk factors for sporadic domestically acquired Campylobacter infections in Norway 2010-2011: a national prospective case-control study. PLoS One. https://doi.org/10.1371/journal.pone.0139636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685

    Article  CAS  PubMed  Google Scholar 

  • Manchanda V, Gupta S, Bhalla P (2006) Meningococcal disease: History, epidemiology, pathogenesis, clinical manifestations, diagnosis, antimicrobial susceptibility and prevention. Indian J Med Microbiol 24:7–19

    Article  CAS  PubMed  Google Scholar 

  • Marchiafava E, Celli A (1884) Spra i micrococchi della meningite cerebrospinale epidemica. Gazz degli Ospedali 5:59

    Google Scholar 

  • Mathema B, Andrews JR, Cohen T et al (2017) Drivers of Tuberculosis Transmission. J Infect Dis 216(6):S644–S653

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuyama R, Kuninaga N, Morimoto T et al (2015) Isolation and antimicrobial susceptibility of Plesiomonas shigelloides from great cormorants (Phalacrocorax carbo hanedae) in Gifu and Shiga Prefectures, Japan. J Vet Med Sci 77(9):1179–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCloskey B, Dar O, Zumla A et al (2014) Emerging infectious diseases and pandemic potential: status quo and reducing risk of global spread. Emerg Respir Tract Infect 14(10):P1001–P1010

    Google Scholar 

  • Miyagi K, Hirai I, Sano K (2016) Distribution of Aeromonas species in environmental water used in daily life in Okinawa Prefecture, Japan. Environ Health Prevent Med 21(5):287–294

    Article  Google Scholar 

  • Moreno Y, Botella S, Alonso JL et al (2003) Specific detection of Arcobacter and Campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Appl Environ Microbiol 69(2):118–1186

    Article  CAS  Google Scholar 

  • Morens DM, Fauci AS (2013) Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 9(7):e1003467. https://doi.org/10.1371/journal.ppat.1003467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GJ, Acheson D (2013) Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shelf. Clin Infect Dis 37(2):272–280

    Article  Google Scholar 

  • Mottola A, Bonerba E, Bozzo G et al (2016) Occurrence of emerging food-borne pathogenic Arcobacter spp. isolated from pre-cut (ready-to-eat) vegetables. Int J Food Microbiol 236:33–37

    Article  PubMed  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.

  • Muriana P, Kushwaha K (2017) Food pathogens of concern: listeria monocytogenes. Oklahoma State University, Division of Agricultural Sciences and Natural Resources. Stillwater: Robert M. Kerr Food and Agricultural Products Center

    Google Scholar 

  • Murray PR, Baron EJ, Jorgensen JH et al (eds) (2003) Manual of clinical microbiology, 8th edn. American Society for Microbiology, Herdon, VA

    Google Scholar 

  • Musa MD, Ahmed WA (2017) Molecular detection of some A.hydrophila toxins and its antibiotics resistance pattern isolated from chicken feces in Thi-Qar Province (Iraq). Kufa. J Vet Med Sci 8(1):167–180

    Google Scholar 

  • New York State Department of Health (2017) Retrieved October 10, 2018, from Listeriosis (Listeria infection): https://www.health.ny.gov/diseases/communicable/listeriosis/fact_sheet.htm

  • Nii-Trebi NI (2017) Emerging and neglected infectious diseases: insights, advances and challenges. Biomed Res Int 15. https://doi.org/10.1155/2017/5245021

    Article  Google Scholar 

  • Nwokocha ARC, Onyemelukwe NF (2014) Plesiomonas shigelloides diarrhea in Enugu area of south eastern Nigeria: incidence, clinical and epidemiological features. IOSR J Dent Med Sci 13(4):68–73

    Google Scholar 

  • Obi CL, Potgieter N, Bessong PO, Matsaung G (2002) Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA. Available on website http://www.wrc.org.za

  • Ohimian EI (2017) Emerging pathogens of global significance; priorities for attention and control. EC Microbiol 5(6):215–240

    Google Scholar 

  • Okumura K, Shoji F, Yoshida M et al (2011) Severe sepsis caused by Aeromonas hydrophila in a patient using tocilizumab: a case report. J Med Case Rep 5(1):499

    Article  PubMed  PubMed Central  Google Scholar 

  • Oladokun MO, Okoh AI (2016) Vibrio cholerae: a historical perspective and current trend. Asian Pac J Trop Dis 6(11):895–908

    Article  Google Scholar 

  • Olcen P, Fredlund H (2001) Isolation, culture, and identification of Meningococci from clinical specimens. In: Pollard AJ, Maiden MJ (eds) Meningococcal disease: methods and protocols. Humana Press Inc, Totowa, NJ, pp 9–19

    Chapter  Google Scholar 

  • Olsvik O, Wachsmuth K, Kay B, Birkness KA, Yi A Sack A (1990) Laboratory observations on Plesiomonas shigelloides strains isolated from children with diarrhea in Peru. J Clin Microbiol 28(5):886–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang M, Jiang J, Xie X et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep 5(1):9833

    Article  PubMed  PubMed Central  Google Scholar 

  • Pangallo D, Kaclikova T, Drahovaska H (2001) Detection of Listeria monocytogenes by polymerase chain reaction oriented to inlBgene. gene. New Microbiol 24:333–339

    CAS  PubMed  Google Scholar 

  • Patterson S, Drewe JA, Pfeiffer DU, Clutton-Brock TH (2017) Social and environmental factors affect tuberculosis related mortality in wild meerkats. J Anim Ecol 86(3):442–450

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul R, Siitonen A, Karkkainen P (1990) Plesiomonas shigelloides bacteremia in a healthy girl with mild gastroenteritis. J Clin Microbiol 28(6):1445–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson S, Al-Shuweli S, Yapici S et al (2015) Identification of clinical Aeromonas species by rpoB and gyrB sequencing and development of a multiplex pcr method for detection of Aeromonas hydrophila, A. caviae, A. veronii, and A. media. J Clin Microbiol 53(2):653–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham-Duc P, Nguyen H, Hattendorf J et al (2014) Diarrhoeal diseases among adult population in an agricultural community Hanam province, Vietnam, with high wastewater and excreta re-use. BMC Public Health 14:978–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Prouzet-Mauléon V, Labadi L, Bouges N et al (2006) Arcobacter butzleri: Underestimated enteropathogen. Emerg Infect Dis 12(2):307–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Public Health Agency of Canada (2011) Pathogen safety data sheets: infectious substances – Aeromonas hydrophila. Retrieved from Government of Canada: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/aeromonas-hydrophila.html

  • Public Health England (2015) Identification of Enterobacteriaceae. UK standards for microbiology investigations. ID 16 4. https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories

  • Ranjbar R, Halaji M (2018) Epidemiology of Listeria monocytogenes prevalence in foods, animals and human origin from Iran: a systematic review and meta-analysis. BMC Public Health 18:1057–1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Raquel MM, Megli CJ, Taylor RK (2010) Growth and Laboratory Maintenance of Vibrio cholerae. Curr Protoc Microbiol. https://doi.org/10.1002/9780471729259.mc06a01s17

    Article  Google Scholar 

  • Rashed SM, Mannan SB, Johura F-T et al (2012) Genetic characteristics of drug-resistant Vibrio cholerae O1 causing endemic cholera in Dhaka, 2006–2011. J Med Microbiol 61:1736–1745

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR (2016) Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol 7:1337

    PubMed  PubMed Central  Google Scholar 

  • Razzolini MT, Günther WM, Martone-Rocha S, et al (2010). Aeromonas presence in drinking water from collective reservoirs and wells in peri-urban area in Brazil. Braz J Microbiol 41(3). doi:https://doi.org/10.1590/S1517-83822010000300020

    Article  CAS  Google Scholar 

  • Rolston KVI, Hopfer RL (1984) Diarrhoea due to Plesiomonas shigelloides in cancer patients. J Clin Microbiol 20(3):597–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouphael NG, Stephens DS (2015) N. meningitidis: biology, microbiology, and epidemiology. Methods Mol Biol 799:1–20. https://doi.org/10.1007/978-1-61779-346-2_1

    Article  CAS  Google Scholar 

  • Salerno A, Deletoile A, Lefevre M et al (2007) Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol 189(21):7808–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg M, Nygård K, Meldal H et al (2006) Incidence trend and risk factors for Campylobacter infections in humans in Norway. BMC Public Health 2006(6):179–186

    Google Scholar 

  • Santos N, Santos C, Valente T et al (2015) Widespread environmental contamination with Mycobacterium tuberculosis complex revealed by a molecular detection protocol. PLoS One 10(11):e0142079. https://doi.org/10.1371/journal.pone.0142079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebald M, Veron M (1963) Base DNA content and classification of vibrios. Ann Inst Pasteur (Paris) 105:897–910

    CAS  Google Scholar 

  • Sellman J, Pederson P (2007) Emerging infectious diseases of immigrant patients. In: Walker PF, Barnett ED (eds) Immigrant medicine. Elsevier, pp 245–253. https://doi.org/10.1016/B978-0-323-03454-8.X5001-3

  • Shange N (2017) TimesLive. Retrieved October 11, 2018, from News: South Africa-Listeriosis, 10 things we know so far: https://www.timeslive.co.za/news/south-africa/2017-12-05-listeriosis-10-things-we-know-so-far/

  • Sharma S, Sachdeva P, Virdi JS (2003) Emerging water-borne pathogens. Appl Microbiol Biotechnol 61:424–428

    Article  CAS  PubMed  Google Scholar 

  • Shepherd JG, Wang L, Reeves PR (2000) Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immunol 68:6056–6061

    Article  CAS  Google Scholar 

  • Shigematsu M, Kaufmann ME, Charlett A et al (2000) An epidemiological study of Plesiomonas shigelloides diarrhoea among Japanese travellers. Epidemiol Infect 125:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva J, Leite D, Fernandes M et al (2011) Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2011.00200

  • Soler L, Figueras MJ, Chacón MR et al (2002) Potential virulence and antimicrobial susceptibility of Aeromonas popoffii recovered from freshwater and seawater. FEMS Immunol Med Microbiol 32(3):243–247

    Article  CAS  PubMed  Google Scholar 

  • Soler L, Yáñez MA, Chacon MR et al (2004) Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54(5):1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Sopwith W, Birtles A, Matthews M et al (2008) Identification of potential environmentally adapted Campylobacter jejuni strain, United Kingdom. Emerg Infect Dis 14(11):1769–1773

    Article  PubMed  PubMed Central  Google Scholar 

  • Sopwith W, Birtles A, Matthews M et al (2010) Investigation of food and environmental exposures relating to the epidemiology of Campylobacter coli in humans in Northwest England. Appl Environ Microbiol 76(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Stainer R (1943) A note on the taxonomy of Proteus hydrophilus. J Bacteriol 46(2):213–214

    Article  Google Scholar 

  • Stephen DS (2009) Biology and pathogenesis of the evolutionarily successful, obligate human bacterium N. meningitidis. Vaccine 27(Suppl 2):B71–B77

    Article  Google Scholar 

  • Teka T, Faruque ASG, Hossain MI, Fuchs GJ (1999) Aeromonas-associated diarrhoea in Bangladeshi children: clinical and epidemiological characteristics. Anna Trop Paediatr 19(1):15–20

    Article  CAS  Google Scholar 

  • Theodoropoulos C, Wong TH, O’brien M, Stenzel D (2001) Plesiomonas shigelloides enters polarized human intestinal Caco-2 cells in an in vitro model system. Infect Immun 69(4):2260–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng H, Liu CP, Li WC et al (2002) Characteristics of Plesiomonas shigelloides infection in Taiwan. J Microbiol Immunol Infect 35(1):47–52

    PubMed  Google Scholar 

  • Tulchinsky TH, Varavikova EA (2015) Communicable Diseases. In: Tulchinsky TH, Varavikova EA (eds) The New Public Health, 3rd edn. Academic Press, Cambridge, MA, pp 149–236

    Chapter  Google Scholar 

  • Ugarte-Ruiz M, Florez-Cuadrado D, Wassenaar TM et al (2015) Method comparison for enhanced recovery, isolation and qualitative detection of C. jejuni and C. coli from wastewater effluent samples. Int J Environ Res Public Health 12:2749–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United Nations Environment Programme Global Environment Monitoring System/Water Programme (UNEP/GEMS) (2008) Water quality for ecosystem and human health, 2nd edn. ISBN 92-95039-51-7 GEMS/Water website at http://www.gemswater.org/. Accessed 25 Nov 2016

    Google Scholar 

  • Vallim DC, Hofer CB, Lisboa R et al (2015) Twenty Years of Listeria in Brazil: Occurrence of Listeria Species and Listeria monocytogenes Serovars in Food Samples in Brazil between 1990 and 2012. Biomed Res Int. https://doi.org/10.1155/2015/540204

    Article  CAS  Google Scholar 

  • Van den Abeele A, Vogelaers D, Van Hende J, Houf K (2014) Prevalence of Arcobacter Species among humans, Belgium, 2008–2013. Emerg Infect Dis 20(10):1731–1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Werf MJ, Langendam MW, Huitric E, Manissero D (2012) Multidrug resistance after inappropriate tuberculosis treatment: a meta-analysis. Eur Respir J 39(6):1511–1519

    Article  PubMed  Google Scholar 

  • Vandamme P, De Ley J (1991) Proposal for a new family Campylobacteraceae. Int J Syst Bacteriol 41:451–455

    Article  Google Scholar 

  • Vandenberg O, Dediste A, Houf K, Ibekwem S, Souayah H, Cadranel S, Douat N, Zissis G, Butzler JP, Vandamme P (2004) Arcobacter species in humans. Emerg Infect Dis 10(10):1863–1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Varoutas D, Katsianis D, Sphicopoulos T et al (2002) Economic viability of 3G mobile virtual network operators. In: Proceedings – 2002 International Conference on Third Generation Wireless and Beyond (Key Function of World Wireless Congress), vol 7, pp 60–63). Frontiers. https://doi.org/10.3389/fmicb.2016.01337

    Chapter  Google Scholar 

  • Vázquez-Boland JA, Kuhn M, Berche P et al (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14(3):584–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivekanandhan G, Savithamani K, Hatha AAM, Lakshmanaperumalsamy P (2002) Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and prawn of South India. Int J Food Microbiol 76(1–2):165–168

    Article  CAS  PubMed  Google Scholar 

  • Von Graevenitz A, Bucher C (1983) Evaluation of differential and selective media for isolation of Aeromonas and Plesiomonas spp. from human faeces. J Clin Microbiol 17(1):16–21

    Article  Google Scholar 

  • Vouga M, Greub G (2016) Emerging bacterial pathogens: the past ad beyond. Clin Microbiol Infect 22(1):12–21

    Article  PubMed  Google Scholar 

  • Wang Y, Zhao A, Zhu R et al (2012) Genetic diversity and molecular typing of Listeria monocytogenes in China. BMC Microbiol 12:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb AL, Taboada EN, Selinger LB et al (2017) Prevalence and diversity of waterborne Arcobacter butzleri in southwestern Alberta, Canada. Can J Microbiol 63(4):330–340

    Article  CAS  PubMed  Google Scholar 

  • Weichselbaum A (1887) Ueber die Aetiologie der akuten Meningitis cerebrospinalis. Fortschr Med 5:573–583

    Google Scholar 

  • Wesley IV (1997) Helicobacter and Arcobacter: Potential human foodborne pathogens. Trend Food Sci Technol 8:293–299

    Article  CAS  Google Scholar 

  • WHO (2013) Emergencies, preparedness, response: Meningococcal disease: 2013 epidemic season in the African Meningitis Belt. Retrieved October 10, 2018, from World Health Organisation: http://www.who.int/csr/don/2013_06_06_menin/en/

    Google Scholar 

  • WHO (2017) Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organisation, Geneva. Retrieved from http://www.who.int/medicines/areas/rational_use/PPLreport_2017_09_19.pdf

    Google Scholar 

  • WHO (2018a) Fact sheets; cholera. Retrieved October 10, 2018, from World Health Organisation: http://www.who.int/en/news-room/fact-sheets/detail/cholera

  • WHO (2018b) Emergencies, preparedness, response: Listeriosis-South Africa (Disease outbreak news). Retrieved October 10, 2018, from World Health Organisation: http://www.who.int/csr/don/02-may-2018-listeriosis-south-africa/en/

  • WHO (2018c) Media Centre: fact sheet- Listeriosis. Retrieved October 19, 2018, from World Health Organisation: https://www.who.int/mediacentre/factsheets/listeriosis/en/

  • WHO (2018d) Meningococcal meningitis. Retrieved October 23, 2018, from World Health Organisation: http://www.who.int/news-room/fact-sheets/detail/meningococcal-meningitis

  • WHO (2018e) News: Campylobacter. Retrieved October 28, 2018, from World Health Organisation: http://www.who.int/news-room/fact-sheets/detail/campylobacter

  • WHO (2018f) Fact sheets: antibiotic resistance. Retrieved October 30, 2018, from World Health Organisation: http://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance

  • WHO (2018g) Managing epidemics: key facts about major deadly diseases. World Health Organisation, Geneva, Switzerland

    Google Scholar 

  • Wirth T, Hildebrand F, Allix-Beguec C et al (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong TY, Tsui HY, So MK et al (2000) Plesiomonas shigelloides infection in Hong Kong: retrospective study of 167 laboratory-confirmed cases. Hong Kong Med J 6(4):375–380

    CAS  PubMed  Google Scholar 

  • Woolhouse ME, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11(12):1842–1847

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organisation (2011) Immunization, vaccines and biologicals: meningococcal meningitis. Retrieved October 21, 2018, from World Health Organisation: https://www.who.int/immunization/topics/meningitis/en/

  • World Health Organisation (2013) The Global View of Campylobacteriosis. WHO Document Production Services, Geneva

    Google Scholar 

  • World Health Organisation (2015) Global Action Plan on Antimicrobial resistance. WHO Document Production Services, Geneva, Switzerland. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1

    Google Scholar 

  • Wybo I, Lindenburg F, Houf K (2004) Isolation of Arcobacter skirrowii from a patient with chronic diarrhea. J Clin Microbiol 42(4):1851–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia F, Liu P, Zhou Y (2015) Meningoencephalitis caused by Plesiomonas shigelloides in a Chinese neonate: case report and literature review. Italian J Paediatr 41:3–7

    Article  Google Scholar 

  • Yadava JP, Jain M, Goel AK (2013) Detection and confirmation of toxigenic Vibrio cholerae 01 in environmental and clinical samples by a direct cell multiplex PCR. Water SA 39(5):611–614

    Article  CAS  Google Scholar 

  • Yáñez MA, Catalán V, Apráiz D et al (2003) Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 53(3):875–883

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Miao P, Li H et al (2018) Antibiotic susceptibility and molecular characterization of Aeromonas hydrophila from grass carp. J Food Saf 38(1):e12393

    Article  CAS  Google Scholar 

  • Young LS, LaForce FM, Head JJ et al (1972) A simultaneous outbreak of meningococcal and influenza infections. New Engl J Med 287:5–9

    Article  CAS  PubMed  Google Scholar 

  • Zacharow I, Bystron J, WaBecka-Zacharska E et al (2015) Genetic diversity and incidence of virulence-associated genes of Arcobacter butzleri and Arcobacter cryaerophilus isolates from pork, beef, and chicken meat in Poland. Biomed Res Int. https://doi.org/10.1155/2015/956507

    Article  CAS  Google Scholar 

  • Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y, (2015) Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 99 (7):3291–3302

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Jiao X (2005) Polymerase chain reaction detection of Listeria monocytogenes using oligonucleotide primers targeting actA gene. Food Control, 16(2), 125–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fono-Tamo, U.E.K., Chukwu, M.O., Ubomba-Jaswa, E., Obi, C.L., Dewar, J.B., Abia, A.L.K. (2020). Emerging and Reemerging Bacterial Pathogens of Humans in Environmental and Hospital Settings. In: Abia, A., Lanza, G. (eds) Current Microbiological Research in Africa. Springer, Cham. https://doi.org/10.1007/978-3-030-35296-7_2

Download citation

Publish with us

Policies and ethics