Skip to main content

Internet of Things in Water Management and Treatment

  • Chapter
  • First Online:
Internet of Things for Sustainable Community Development

Part of the book series: Internet of Things ((ITTCC))

Abstract

The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamchuk, V., Hummel, J., Morgan, M., & Upadhyaya, S. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91.

    Google Scholar 

  2. Agel, L., Barlow, M., Colby, F., Binder, H., Catto, J.L., Hoell, A., et al. (2019). Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dynamics, 52(3–4), 1739–1760.

    Google Scholar 

  3. Akyildiz, I. F., & Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks Journal, 4, 669–686.

    Google Scholar 

  4. Akyildiz, I. F., Sun, Z., & Vuran, M. C. (2009). Signal propagation techniques for wireless underground communication networks. Physical Communication Journal, 2(3), 167–183.

    Google Scholar 

  5. Alexander, L., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5), 1–22.

    Google Scholar 

  6. Allred, B. M., Lang, J. R., Barlaz, M. A., & Field, J.A. (2014). Orthogonal zirconium diol/C18 liquid chromatography–tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. Journal of Chromatography A, 1359, 202–211.

    Google Scholar 

  7. American Water Works Association (AWWA). (2010). Risk and resilience management of water and wastewater systems. Denver: American Water Works Association.

    Google Scholar 

  8. American Water Works Association (AWWA). (2015). Water/wastewater agency response network (warn). Denver: American Water Works Association.

    Google Scholar 

  9. Andjelkovic, I. (2001). Guidelines on non-structural measures in urban flood management. Technical Report. International Hydrological Programme (IHP), United Nations Educational, Scientific and Cultural Organization.

    Google Scholar 

  10. Arvai, A., Klecka, G., Jasim, S., Melcer, H., & Laitta, M. (2013). Protecting our great lakes: Assessing the effectiveness of wastewater treatments for the removal of chemicals of emerging concern. Water Quality Research Journal of Canada 49(1), 23–31. https://doi.org/10.2166/wqrjc.2013.104. Cited By 8.

    Google Scholar 

  11. Asano, T., & Cotruvo, J. (2004). Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Research 38(8), 1941–1951. https://doi.org/10.1016/j.watres.2004.01.023. Cited By 236.

    Google Scholar 

  12. Backe, W. J., Day, T. C., & Field, J. A. (2013). Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from US military bases by nonaqueous large-volume injection HPLC-MS/MS. Environmental Science & Technology, 47(10), 5226–5234.

    Google Scholar 

  13. Backer, L., & Moore, S. (2010). Harmful algal blooms: future threats in a warmer world. In A. Nemr (Ed.), Environmental pollution and its relation to climate change (pp. 485–512).

    Google Scholar 

  14. Bakker, K. (2012). Water security: research challenges and opportunities. Science, 337(6097), 914–915.

    Google Scholar 

  15. Balci, P., & Cohn, A. (2014). NYC wastewater resiliency plan: Climate risk assessment and adaptation. In ICSI 2014: Creating infrastructure for a sustainable world (pp. 246–256).

    Google Scholar 

  16. Bellar, T. A., Lichtenberg, J. J., & Kroner, R. C. (1974). The occurrence of organohalides in chlorinated drinking waters. Journal-American Water Works Association, 66(12), 703–706.

    Google Scholar 

  17. Benskin, J. P., Li, B., Ikonomou, M. G., Grace, J. R., & Li, L. Y. (2012). Per-and polyfluoroalkyl substances in landfill leachate: patterns, time trends, and sources. Environmental Science & Technology, 46(21), 11532–11540.

    Google Scholar 

  18. Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., & Vereecken, H. (2010). Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9(4), 1002–1013.

    Google Scholar 

  19. Bredehoeft, J. (2011). Monitoring regional groundwater extraction: The problem. Groundwater, 49(6), 808–814.

    Google Scholar 

  20. Brikowski, T. H. (2008). Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the great plains lead to unsustainable surface water storage. Journal of hydrology, 354(1–4), 90–101.

    Google Scholar 

  21. Buck, R. C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., De Voogt, P., et al. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management, 7(4), 513–541.

    Google Scholar 

  22. Burleson, G., Tilt, B., Sharp, K., & MacCarty, N. (2019). Reinventing boiling: A rapid ethnographic and engineering evaluation of a high-efficiency thermal water treatment technology in Uganda. Energy Research & Social Science, 52, 68–77.

    Google Scholar 

  23. Cannon, F., Carvalho, L. M., Jones, C., Hoell, A., Norris, J., Kiladis, G.N., et al. (2017). The influence of tropical forcing on extreme winter precipitation in the Western Himalaya. Climate Dynamics, 48(3–4), 1213–1232.

    Google Scholar 

  24. Casanova, J., Devau, N., & Pettenati, M. (2016). Managed aquifer recharge: An overview of issues and options. In Integrated groundwater management. Cham: Springer. Cited By 8.

    Google Scholar 

  25. Catarci, T., Dix, A., Kimani, S., & Santucci, G. (2010). User-centered data management. Synthesis Lectures on Data Management 2(1), 1–106.

    MATH  Google Scholar 

  26. Chen, J., Broussard, W. P., Borrok, D. M., & Speyrer, F. B. (2019). A GIS-based framework to identify opportunities to use surface water to offset groundwater withdrawals. Water Resources Management, 1–11.

    Google Scholar 

  27. Cromwell, J., & McGuckin, R. (2010). Implications of climate change for adaptation by wastewater and stormwater agencies. Proceedings of the Water Environment Federation, 2010(15), 1887–1915.

    Google Scholar 

  28. DeZellar, J., & Maier, W. (1980). Effects of water conservation on sanitary sewers and wastewater treatment plants. Journal of the Water Pollution Control Federation, 52(1), 76–88. Cited By 12.

    Google Scholar 

  29. Dhasmana, A., Uniyal, S., Kumar, V., Gupta, S., Kesari, K.K., Haque, S., et al. (2019). Scope of nanoparticles in environmental toxicant remediation. In Environmental Biotechnology: For Sustainable Future (pp. 31–44). Berlin: Springer.

    Google Scholar 

  30. Dong, X., Vuran, M. C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11(7), 1975–1987. https://doi.org/10.1016/j.adhoc.2012.06.012.

    Google Scholar 

  31. EPA clean-up information. https://clu-in.org/remediation/.

  32. Flood, J. F., & Cahoon, L. B. (2011). Risks to coastal wastewater collection systems from sea-level rise and climate change. Journal of Coastal Research, 27(4), 652–660.

    Google Scholar 

  33. Gain, A., Giupponi, C., & Wada, Y. (2016). Measuring global water security towards sustainable development goals. Environmental Research Letters, 11(12). https://doi.org/10.1088/1748-9326/11/12/124015. Cited By 18.

    Google Scholar 

  34. Gallopín, G. The United Nations World Water Development Report – N∘ 4 – Global Water Futures 2050: Five Stylized Scenarios. UNESCO.

    Google Scholar 

  35. Garrison, N., & Hobbs, K. (2011). Rooftops to rivers ii: Green strategies for controlling stormwater and combined sewer overflows (pp. 1–134). New York, NY: Natural Resources Defense Council.

    Google Scholar 

  36. Glibert, P. M., Anderson, D. M., Gentien, P., Granéli, E., & Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography, 18(2), 136–147.

    Google Scholar 

  37. Goldsmith, A. (2005). Wireless communications. New York, NY: Cambridge University Press.

    Google Scholar 

  38. Gunda, T., Hess, D., Hornberger, G. M., & Worland, S. (2019). Water security in practice: The quantity-quality-society nexus. Water Security, 6, 100022.

    Google Scholar 

  39. Guo, H., & Sun, Z. (2014). Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs. IEEE Transactions Wireless Communications, 13(4), 2258–2269. https://doi.org/10.1109/TWC.2013.031314.130835.

    Google Scholar 

  40. Hamid, H., Li, L. Y., & Grace, J. R. (2018). Review of the fate and transformation of per-and polyfluoroalkyl substances (PFASs) in landfills. Environmental Pollution, 235, 74–84.

    Google Scholar 

  41. Hamill, T. M., Engle, E., Myrick, D., Peroutka, M., Finan, C., & Scheuerer, M. (2017). The US national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Monthly Weather Review, 145(9), 3441–3463.

    Google Scholar 

  42. Hoekstra, A. Y., Buurman, J., & van Ginkel, K. C. (2018). Urban water security: A review. Environmental Research Letters, 13(5), 053002.

    Google Scholar 

  43. Hofstetter, J. C., Wydallis, J. B., Neymark, G., Reilly III, T. H., Harrington, J., & Henry, C. S. (2018). Quantitative colorimetric paper analytical devices based on radial distance measurements for aqueous metal determination. Analyst, 143(13), 3085–3090.

    Google Scholar 

  44. Hu, X. C., Andrews, D. Q., Lindstrom, A. B., Bruton, T. A., Schaider, L. A., Grandjean, P., et al. (2016). Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environmental Science & Technology Letters, 3(10), 344–350.

    Google Scholar 

  45. Huset, C. A., Barlaz, M. A., Barofsky, D. F., & Field, J. A. (2011). Quantitative determination of fluorochemicals in municipal landfill leachates. Chemosphere, 82(10), 1380–1386.

    Google Scholar 

  46. Hutchins, M. G., McGrane, S. J., Miller, J. D., Hagen-Zanker, A., Kjeldsen, T. R., Dadson, S. J., et al. (2017). Integrated modeling in urban hydrology: reviewing the role of monitoring technology in overcoming the issue of ‘big data’ requirements. Wiley Interdisciplinary Reviews: Water, 4(1), e1177.

    Google Scholar 

  47. Ji, Y., Dong, C., Kong, D., Lu, J., & Zhou, Q. (2015). Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides. Chemical Engineering Journal, 263, 45–54.

    Google Scholar 

  48. Johnk, C. T. (1988). Engineering electromagnetic fields and waves (2nd ed.). Hoboken: John Wiley & Sons.

    Google Scholar 

  49. Kessler, R. (2011). Stormwater strategies: cities prepare aging infrastructure for climate change. Environ Health Perspect, 119(12), 514–519. https://doi.org/10.1289/ehp.119-a514.

    Google Scholar 

  50. Konda, A., Rau, A., Stoller, M. A., Taylor, J. M., Salam, A., Pribil, G. A., et al. (2018). Soft microreactors for the deposition of conductive metallic traces on planar, embossed, and curved surfaces. Advanced Functional Materials, 28(40), 1803020. https://doi.org/10.1002/adfm.201803020.

    Google Scholar 

  51. Koo, D., Piratla, K., & Matthews, C. J. (2015). Towards sustainable water supply: schematic development of big data collection using internet of things (IoT). Procedia Engineering, 118, 489–497.

    Google Scholar 

  52. Li, X.-q., Elliott, D. W., & Zhang, W.-x. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122.

    Google Scholar 

  53. Luo, L., Apps, D., Arcand, S., Xu, H., Pan, M., & Hoerling, M. (2017). Contribution of temperature and precipitation anomalies to the California drought during 2012–2015. Geophysical Research Letters, 44(7), 3184–3192.

    Google Scholar 

  54. Markham, A., & Trigoni, N. (2012). Magneto-inductive networked rescue system (MINERS): Taking sensor networks underground. In Proceedings of the 11th ICPS, IPSN ’12 (pp. 317–328). New York: ACM. https://doi.org/10.1145/2185677.2185746.

    Google Scholar 

  55. Merino, N., Qu, Y., Deeb, R. A., Hawley, E. L., Hoffmann, M. R., & Mahendra, S. (2016). Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environmental Engineering Science, 33(9), 615–649.

    Google Scholar 

  56. Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A., Backer, L. C., et al. (2008). Impacts of climate variability and future climate change on harmful algal blooms and human health. In Environmental health (Vol. 7, p. S4). London: BioMed Central.

    Google Scholar 

  57. Mulligan, C., Yong, R., & Gibbs, B. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1–4), 193–207.

    Google Scholar 

  58. National Research Council. (2012). Water reuse: Potential for expanding the nation’s water supply through reuse of municipal wastewater. Washington, DC: The National Academies Press. https://doi.org/10.17226/13303. Cited By 44.

  59. Nilsen, V., Lier, J., Bjerkholt, J., & Lindholm, O. (2011). Analysing urban floods and combined sewer overflows in a changing climate. Journal of Water and Climate Change, 2(4), 260–271.

    Google Scholar 

  60. Nyer, E. K. (2019). Practical techniques for groundwater & soil remediation. New York: Routledge.

    Google Scholar 

  61. Peplinski, N. R., Ulaby, F. T., & Dobson, M. C. (1995). Dielectric properties of soils in the 0.3-1.3-GHz range. In IEEE transactions on geoscience and remote sensing, vol. 33(3) (pp. 803–807). https://doi.org/10.1109/36.387598.

    Google Scholar 

  62. Pilon, B. S., Tyner, J. S., Yoder, D. C., & Buchanan, J. R. (2019). The effect of pervious concrete on water quality parameters: a case study. Water, 11(2), 263.

    Google Scholar 

  63. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). The natural flow regime. BioScience, 47(11), 769–784.

    Google Scholar 

  64. Rahman, M. F., Peldszus, S., & Anderson, W. B. (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Research, 50, 318–340.

    Google Scholar 

  65. Rao, P. S. C., Annable, M. D., Sillan, R. K., Dai, D., Hatfield, K., Graham, W. D., et al. (1997). Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Resources Research, 33(12), 2673–2686.

    Google Scholar 

  66. Rice, J., & Westerhoff, P. (2015). Spatial and temporal variation in de facto wastewater reuse in drinking water systems across the USA. Environmental Science and Technology, 49(2), 982–989. https://doi.org/10.1021/es5048057. Cited By 43.

    Google Scholar 

  67. Robles, T., Alcarria, R., de Andrés, D. M., de la Cruz, M. N., Calero, R., Iglesias, S., et al. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.

    Google Scholar 

  68. Robles, T., Alcarria, R., Martín, D., Morales, A., Navarro, M., Calero, R., et al. (2014). An internet of things-based model for smart water management. In: 2014 28th International Conference on Advanced Information Networking and Applications Workshops (pp. 821–826). Piscataway: IEEE.

    Google Scholar 

  69. Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., et al. (2018). A review of emerging technologies for remediation of PFASs. Remediation Journal, 28(2), 101–126.

    Google Scholar 

  70. Saeed, N., Alouini, M. S., & Al-Naffouri, T. Y. (2019). 3D localization for internet of underground things in oil and gas reservoirs. IEEE Access, 7, 121769–121780.

    Google Scholar 

  71. Saeed, N., Alouini, M. S., & Al-Naffouri, T. Y. (2019). Towards the internet of underground things: A systematic survey. IEEE Communications Surveys & Tutorials.

    Google Scholar 

  72. Salam, A. (2018). Pulses in the sand: Long range and high data rate communication techniques for next generation wireless underground networks. Lincoln: ETD collection for University of Nebraska (AAI10826112). http://digitalcommons.unl.edu/dissertations/AAI10826112.

  73. Salam, A. (2019). A comparison of path loss variations in soil using planar and dipole antennas. In 2019 IEEE International Symposium on Antennas and Propagation. Piscataway: IEEE.

    Google Scholar 

  74. Salam, A. (2019). A path loss model for through the soil wireless communications in digital agriculture. In 2019 IEEE International Symposium on Antennas and Propagation. Piscataway: IEEE.

    Google Scholar 

  75. Salam, A. (2019). Subsurface MIMO: A beamforming design in internet of underground things for digital agriculture applications. Journal of Sensor and Actuator Networks, 8(3). https://doi.org/10.3390/jsan8030041.

    MathSciNet  Google Scholar 

  76. Salam, A. (2019). Underground environment aware MIMO design using transmit and receive beamforming in internet of underground things. In 2019 International Conference on Internet of Things (ICIOT 2019), San Diego.

    Google Scholar 

  77. Salam, A. (2019). An underground radio wave propagation prediction model for digital agriculture. Information, 10(4). https://doi.org/10.3390/info10040147.

    Google Scholar 

  78. Salam, A. (2019). Underground soil sensing using subsurface radio wave propagation. In 5th Global Workshop on Proximal Soil Sensing, Columbia.

    Google Scholar 

  79. Salam, A., & Shah, S. (2019). Internet of things in smart agriculture: Enabling technologies. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (WF-IoT 2019), Limerick.

    Google Scholar 

  80. Salam, A., & Shah, S. (2019). Urban underground infrastructure monitoring IoT: The path loss analysis. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (WF-IoT 2019), Limerick.

    Google Scholar 

  81. Salam, A., & Vuran, M. C. (2017). Smart underground antenna arrays: A soil moisture adaptive beamforming approach. In Proceedings of IEEE INFOCOM 2017, Atlanta.

    Google Scholar 

  82. Salam, A., & Vuran, M. C. (2017). Wireless underground channel diversity reception with multiple antennas for internet of underground things. In Proceedings of IEEE ICC 2017, Paris.

    Google Scholar 

  83. Salam, A., & Vuran, M. C. (2018). EM-based wireless underground sensor networks. In S. Pamukcu, L. Cheng (Eds.) Underground Sensing (pp. 247–285). Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-803139-1.00005-9.

    Google Scholar 

  84. Salam, A., Vuran, M. C., Dong, X., Argyropoulos, C., & Irmak, S. (2019). A theoretical model of underground dipole antennas for communications in internet of underground things. IEEE Transactions on Antennas and Propagation, 67(6), 3996–4009.

    Google Scholar 

  85. Salam, A., Vuran, M. C., & Irmak, S. (2016). Pulses in the sand: Impulse response analysis of wireless underground channel. In Proceedings of INFOCOM 2016, San Francisco.

    Google Scholar 

  86. Salam, A., Vuran, M. C., & Irmak, S. (2017). Towards internet of underground things in smart lighting: A statistical model of wireless underground channel. In Proceedings of 14th IEEE International Conference on Networking, Sensing and Control (IEEE ICNSC), Calabria.

    Google Scholar 

  87. Salam, A., Vuran, M. C., & Irmak, S. (2019). Di-sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Computer Networks, 151, 31–41. https://doi.org/10.1016/j.comnet.2019.01.001.

    Google Scholar 

  88. Sanders, D. A. (1997). Damage to wastewater treatment facilities from great flood of 1993. Journal of Environmental Engineering, 123(1), 54–60.

    Google Scholar 

  89. Scibek, J., Allen, D. M., Cannon, A. J., & Whitfield, P. H. (2007). Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology, 333(2–4), 165–181.

    Google Scholar 

  90. Sinha, S. K., & Knight, M. A. (2004). Intelligent system for condition monitoring of underground pipelines. Computer-Aided Civil and Infrastructure Engineering, 19(1), 42–53.

    Google Scholar 

  91. Sun, Z., & Akyildiz, I. (2010). Channel modeling and analysis for wireless networks in underground mines and road tunnels. IEEE Transactions on Communications, 58(6), 1758–1768. https://doi.org/10.1109/TCOMM.2010.06.080353.

    Google Scholar 

  92. Sun, Z., Wang, P., Vuran, M. C., Al-Rodhaan, M. A., Al-Dhelaan, A. M., & Akyildiz, I. F. (2011). MISE-PIPE: Magnetic induction-based wireless sensor networks for underground pipeline monitoring. Ad Hoc Networks, 9(3), 218–227.

    Google Scholar 

  93. Sun, Z., Wang, P., Vuran, M. C., Al-Rodhaan, M. A., Al-Dhelaan, A. M., & Akyildiz, I. F. (2011). Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 9(3), 468–477.

    Google Scholar 

  94. Temel, S., Vuran, M. C., Lunar, M. M., Zhao, Z., Salam, A., Faller, R. K., et al. (2018). Vehicle-to-barrier communication during real-world vehicle crash tests. Computer Communications, 127, 172–186. https://doi.org/10.1016/j.comcom.2018.05.009.

    Google Scholar 

  95. Teschke, K., Bellack, N., Shen, H., Atwater, J., Chu, R., Koehoorn, M., et al. (2010). Water and sewage systems, socio-demographics, and duration of residence associated with endemic intestinal infectious diseases: A cohort study. BMC Public Health, 10(1), 767.

    Google Scholar 

  96. Tiusanen, M. J. (2013). Soil scouts: Description and performance of single hop wireless underground sensor nodes. Ad Hoc Networks, 11(5), 1610–1618. http://doi.org/10.1016/j.adhoc.2013.02.002.

    Google Scholar 

  97. Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1(2), 44–48.

    Google Scholar 

  98. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138.

    Google Scholar 

  99. Trenberth, K. E., Zhang, Y., & Gehne, M. (2017). Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. Journal of Hydrometeorology, 18(5), 1393–1412.

    Google Scholar 

  100. Tsitonaki, A., Petri, B., Crimi, M., Mosbæk, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Critical Reviews in Environmental Science and Technology, 40(1), 55–91.

    Google Scholar 

  101. Tuohy, P., O’Loughlin, J., Peyton, D., & Fenton, O. (2018). The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate. Agricultural Water Management, 210, 96–107.

    Google Scholar 

  102. Tuomela, C., Sillanpää, N., & Koivusalo, H. (2019). Assessment of stormwater pollutant loads and source area contributions with storm water management model (SWMM). Journal of Environmental Management, 233, 719–727.

    Google Scholar 

  103. U.S. Department of the Interior Advisory Committee on Water Information, S.o.G.: A national framework for ground-water monitoring in the U.S. (2013).

    Google Scholar 

  104. Vuran, M., Dong, X., & Anthony, D. (2016). Antenna for wireless underground communication. https://www.google.com/patents/US9532118. US Patent 9532118.

  105. Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254. https://doi.org/10.1016/j.phycom.2010.07.001.

    Google Scholar 

  106. Vuran, M. C., Salam, A., Wong, R., & Irmak, S. (2018). Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Networks, 81, 160–173. https://doi.org/10.1016/j.adhoc.2018.07.017.

    Google Scholar 

  107. Vuran, M. C., Salam, A., Wong, R., & Irmak, S. (2018). Internet of underground things: Sensing and communications on the field for precision agriculture. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (WF-IoT 2018), Singapore.

    Google Scholar 

  108. Wait, J., & Fuller, J. (1971). On radio propagation through earth: Antennas and propagation. IEEE Transactions Antennas and Propagation, 19(6), 796–798.

    Google Scholar 

  109. Wang, X. D., & Wolfbeis, O. S. (2012). Fiber-optic chemical sensors and biosensors (2008–2012). Analytical Chemistry, 85(2), 487–508.

    Google Scholar 

  110. Weiser, M. (2018). Recycled wastewater at your tap? It could be soon in Arizona. New York: News Deeply. Cited By 1.

    Google Scholar 

  111. Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., et al. (2007). Detection of human influence on twentieth-century precipitation trends. Nature, 448(7152), 461.

    Google Scholar 

  112. Zhang, Y., Sivakumar, M., Yang, S., Enever, K., & Ramezanianpour, M. (2018). Application of solar energy in water treatment processes: A review. Desalination, 428, 116–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A. (2020). Internet of Things in Water Management and Treatment. In: Internet of Things for Sustainable Community Development. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-35291-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35291-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35290-5

  • Online ISBN: 978-3-030-35291-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics