Skip to main content

Internet of Things for Sustainable Forestry

  • Chapter
  • First Online:

Part of the book series: Internet of Things ((ITTCC))

Abstract

Forests and grasslands play an important role in water and air purification, prevention of the soil erosion, and in provision of habitat to wildlife. Internet of Things has a tremendous potential to play a vital role in the forest ecosystem management and stability. The conservation of species and habitats, timber production, prevention of forest soil degradation, forest fire prediction, mitigation, and control can be attained through forest management using Internet of Things. The use and adoption of IoT in forest ecosystem management is challenging due to many factors. Vast geographical areas and limited resources in terms of budget and equipment are some of the limiting factors. In digital forestry, IoT deployment offers effective operations, control, and forecasts for soil erosion, fires, and undesirable depositions. In this chapter, IoT sensing and communication applications are presented for digital forestry systems. Different IoT systems for digital forest monitoring applications are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although there is some error in soil moisture-permittivity relationship, and its dependence is also weak for mineral soils, it has been shown to work well in fine, and coarse textured soils [55].

References

  1. Agency, U. E. P. (2005). Greenhouse gas mitigation potential in US forestry and agriculture

    Google Scholar 

  2. Al-Ghussain, L. (2019). Global warming: Review on driving forces and mitigation. Environmental Progress & Sustainable Energy, 38(1), 13–21.

    Article  Google Scholar 

  3. Anthony, D., Bennett, W. P., Vuran, M. C., Dwyer, M. B., Elbaum, S., Lacy, A., et al. (2012). Sensing through the continent: Towards monitoring migratory birds using cellular sensor networks. In Proceedings of the 11th International Conference on Information Processing in Sensor Networks (pp. 329–340). New York: ACM.

    Google Scholar 

  4. Arshad, S., Ahmad, M., Saboor, A., Ibrahim, F. H., Mustafa, M. R. U., Zafar, M., et al. (2019). Role of trees in climate change and their authentication through scanning electron microscopy. Microscopy Research and Technique, 82(2), 92–100.

    Article  Google Scholar 

  5. Bagaram, M., Giuliarelli, D., Chirici, G., Giannetti, F., & Barbati, A. (2018). UAV remote sensing for biodiversity monitoring: Are forest canopy gaps good covariates? Remote Sensing, 10(9), 1397.

    Google Scholar 

  6. Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  7. Baumgartner, R. J. (2019). Sustainable development goals and the forest sector—a complex relationship. Forests, 10(2), 152.

    Article  Google Scholar 

  8. Bechtold, W. A., & Patterson, P. L., (2005). The enhanced forest inventory and analysis program-national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station (Vol. 80, 85 p.)

    Google Scholar 

  9. Birdsey, R., Pregitzer, K., & Lucier, A. (2006). Forest carbon management in the United States. Journal of Environmental Quality, 35(4), 1461–1469.

    Article  Google Scholar 

  10. Blecha, K. A., Boone, R. B., & Alldredge, M. W. (2018). Hunger mediates apex predator’s risk avoidance response in wildland–urban interface. Journal of Animal Ecology, 87(3), 609–622.

    Article  Google Scholar 

  11. Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Global Change Biology, 12(5), 862–882.

    Article  Google Scholar 

  12. Boisvenue, C., & Running, S. W. (2010). Simulations show decreasing carbon stocks and potential for carbon emissions in rocky mountain forests over the next century. Ecological Applications, 20(5), 1302–1319.

    Article  Google Scholar 

  13. Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., et al. (2009). The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51(4), 337–351.

    Article  Google Scholar 

  14. Brown, S., Gillespie, A. J., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881–902.

    Google Scholar 

  15. Burgan, R. E., & Rothermel, R. C. (1984). Behave: Fire Behavior Prediction and Fuel Modeling System–Fuel Subsystem. General Technical Report INT-167. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station (Vol. 167, 126 p.)

    Google Scholar 

  16. Castro, I., De Rosa, A., Priyadarshani, N., Bradbury, L., & Marsland, S. (2019). Experimental test of birdcall detection by autonomous recorder units and by human observers using broadcast. Ecology and Evolution, 9(5), 2376–2397.

    Article  Google Scholar 

  17. Češljar, G., & Stevović, S. (2015). Small reservoirs and their sustainable role in fires protection of forest resources. Renewable and Sustainable Energy Reviews, 47, 496–503.

    Article  Google Scholar 

  18. Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752.

    Article  Google Scholar 

  19. Clements, C. B., Kochanski, A. K., Seto, D., Davis, B., Camacho, C., Lareau, N.P., et al. (2019). The fireflux II experiment: A model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread. International Journal of Wildland Fire, 28(4), 308–326.

    Article  Google Scholar 

  20. Coppes, J., Nopp-Mayr, U., Grünschachner-Berger, V., Storch, I., Suchant, R., & Braunisch, V. (2018). Habitat suitability modulates the response of wildlife to human recreation. Biological Conservation, 227, 56–64.

    Article  Google Scholar 

  21. Crabbe, R. A., Janouš, D., Dařenová, E., & Pavelka, M. (2019). Exploring the potential of Landsat-8 for estimation of forest soil CO2 efflux. International Journal of Applied Earth Observation and Geoinformation, 77, 42–52

    Article  Google Scholar 

  22. Craig, R. K., & Ruhl, J. (2019). Adaptive management for ecosystem services at the wildland-urban interface.

    Book  Google Scholar 

  23. Crann, S. E., Fairley, C., Badulescu, D., Mohn, W. W., & O’Doherty, K. C. (2015). Soils, microbes, and forest health: A qualitative analysis of social and institutional factors affecting genomic technology adoption. Technology in Society, 43, 1–9.

    Article  Google Scholar 

  24. Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G., & Lugo, A. E. (2008). The spread of invasive species and infectious disease as drivers of ecosystem change. Frontiers in Ecology and the Environment, 6(5), 238–246.

    Article  Google Scholar 

  25. Curtis, J. O. (2001). A durable laboratory apparatus for the measurement of soil dielectric properties. IEEE Transactions on Instrumentation and Measurement, 50(5), 1364–1369. https://doi.org/10.1109/19.963211

    Article  Google Scholar 

  26. Cushman, S. A., Macdonald, E. A., Landguth, E. L., Malhi, Y., & Macdonald, D. W. (2017). Multiple-scale prediction of forest loss risk across Borneo. Landscape Ecology, 32(8), 1581–1598.

    Article  Google Scholar 

  27. Cushman, S. A., Mersmann, T. J., Moisen, G. G., McKelvey, K. S., & Vojta, C. D. (2013). . Using habitat models for habitat mapping and monitoring. In M. M. Rowland & C. D. Vojta (tech. eds.). A technical guide for monitoring wildlife habitat. Gen. Tech. Rep. WO-89. Washington, DC: US Department of Agriculture, Forest Service (Vol. 89, 14 p.), 5–1.

    Google Scholar 

  28. Daigneault, A., Sohngen, B., Sedjo, R. (2012). Economic approach to assess the forest carbon implications of biomass energy. Environmental Science & Technology, 46(11), 5664–5671.

    Article  Google Scholar 

  29. Dale, V. H., Tharp, M. L., Lannom, K. O., & Hodges, D. G. (2010). Modeling transient response of forests to climate change. Science of the Total Environment, 408(8), 1888–1901.

    Article  Google Scholar 

  30. Degerickx, J., Roberts, D. A., McFadden, J. P., Hermy, M., & Somers, B. (2018). Urban tree health assessment using airborne hyperspectral and LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation, 73, 26–38.

    Article  Google Scholar 

  31. Dilling, L., Daly, M. E., Kenney, D. A., Klein, R., Miller, K., Ray, A. J., et al. (2019). Drought in urban water systems: Learning lessons for climate adaptive capacity. Climate Risk Management, 23, 32–42.

    Article  Google Scholar 

  32. Ebel, B. A., & Mirus, B. B. (2014). Disturbance hydrology: Challenges and opportunities. Hydrological Processes, 28(19), 5140–5148.

    Article  Google Scholar 

  33. Foti, R., Ramirez, J. A., & Brown, T. C. (2012). Vulnerability of US water supply to shortage: A technical document supporting the forest service 2010 RPA assessment. Gen. Tech. Rep. RMRS-GTR-295. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station (Vol. 295, 147 p.)

    Google Scholar 

  34. Fuss, C. B., Lovett, G. M., & Crowley, K. F. (2018). Modeling how invasive pest-induced changes in tree species composition affect forest carbon and nitrogen cycling. In AGU Fall Meeting Abstracts

    Google Scholar 

  35. Galik, C. S., Abt, R., & Wu, Y. (2009). Forest biomass supply in the southeastern United States—Implications for industrial roundwood and bioenergy production. Journal of Forestry, 107(2), 69–77.

    Google Scholar 

  36. Gebert, A. (2019). Remote sensing methods for detecting deforestation and illegal logging in Bosnia and Herzegovina. Student thesis series INES

    Google Scholar 

  37. Giraldo, J. P., Wu, H., Newkirk, G. M., & Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnology, 14(6), 541–553.

    Article  Google Scholar 

  38. Golub, A., Hertel, T., Lee, H. L., Rose, S., & Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31(4), 299–319.

    Article  Google Scholar 

  39. Gougherty, A. V., Keller, S. R., Kruger, A., Stylinski, C. D., Elmore, A. J., & Fitzpatrick, M. C. (2018). Estimating tree phenology from high frequency tree movement data. Agricultural and Forest Meteorology, 263, 217–224.

    Article  Google Scholar 

  40. Grimm, N. B., Chapin III, F. S., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., et al. (2013). The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11(9), 474–482.

    Article  Google Scholar 

  41. Group, M. P. W. (1998). The Montréal process. Ottawa: Montréal Process Liaison Office.

    Google Scholar 

  42. Group, M. P. W. (1999). Criteria and indicators for the conservation and sustainable management of temperate and boreal forests. The Montréal Process

    Google Scholar 

  43. Hohner, A. K., Rhoades, C. C., Wilkerson, P., & Rosario-Ortiz, F. L. (2019). Wildfires alter forest watersheds and threaten drinking water quality. Accounts of Chemical Research, 52(5), 1234–1244.

    Google Scholar 

  44. Hudson, T. D. (2016). Seeding after fire. Extension Report, Washington State University, FS206E. pp 1–8. https://s3.wp.wsu.edu/uploads/sites/2063/2016/03/Seeding-After-A-Fire.pdf

  45. Hunter, M. L., & Schmiegelow, F. K. A. (1990). Wildlife, forests, and forestry. Principles of managing forests for biological diversity. Upper Saddle River: Prentice Hall.

    Google Scholar 

  46. Huynh, C. (2019). Transferring nanofiber forests between substrates. US Patent App. 16/190,329

    Google Scholar 

  47. Ince, P., Schuler, A., Spelter, H., & Luppold, W. (2007). Globalization and structural change in the US forest sector: An evolving context for sustainable forest management. General Technical Report FPL-GTR-170. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory (Vol. 170, 62 pp.)

    Google Scholar 

  48. Izaurralde, R. C., Thomson, A. M., Morgan, J., Fay, P., Polley, H., & Hatfield, J. L. (2011). Climate impacts on agriculture: Implications for forage and rangeland production. Agronomy Journal, 103(2), 371–381.

    Article  Google Scholar 

  49. Jiang, H., Apps, M. J., Peng, C., Zhang, Y., & Liu, J. (2002). Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecology and Management, 169(1–2), 65–82.

    Article  Google Scholar 

  50. Josephson, B., & Blomquist, A. (1958). The influence of moisture in the ground, temperature and terrain on ground wave propagation in the VHF-band. IRE Transactions on Antennas and Propagation, 6(2), 169–172. https://doi.org/10.1109/TAP.1958.1144574

    Article  Google Scholar 

  51. Kane, V. R., North, M. P., Lutz, J. A., Churchill, D. J., Roberts, S. L., Smith, D. F., et al. (2014). Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park. Remote Sensing of Environment, 151, 89–101.

    Article  Google Scholar 

  52. Keeley, J. E., & Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fire-prone ecosystems. International Journal of Wildland Fire, 28(4), 282–287.

    Article  Google Scholar 

  53. Kim, J., Johnson, L., Cifelli, R., Choi, J., & Chandrasekar, V. (2018). Derivation of soil moisture recovery relation using soil conservation service (SCS) curve number method. Water, 10(7), 833.

    Article  Google Scholar 

  54. Koc-San, D., Selim, S., Aslan, N., & San, B. T. (2018). Automatic citrus tree extraction from UAV images and digital surface models using circular Hough transform. Computers and Electronics in Agriculture, 150, 289–301.

    Article  Google Scholar 

  55. Ledieu, J., Ridder, P. D., Clerck, P. D., & Dautrebande, S. (1986). A method of measuring soil moisture by time-domain reflectometry. Journal of Hydrology, 88(3), 319–328. http://dx.doi.org/10.1016/0022-1694(86)90097-1

    Article  Google Scholar 

  56. Linser, S., Wolfslehner, B., Asmar, F., Bridge, S., Gritten, D., Guadalupe, V., et al. (2018). 25 years of criteria and indicators for sustainable forest management: Why some intergovernmental C&I processes flourished while others faded. Forests, 9(9), 515.

    Article  Google Scholar 

  57. Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications, 19(4), 1003–1021.

    Article  Google Scholar 

  58. Liu, Z., Ballantyne, A. P., & Cooper, L. A. (2019). Biophysical feedback of global forest fires on surface temperature. Nature Communications, 10(1), 214.

    Article  Google Scholar 

  59. Liu, Z., & Kim, A. K. (2003). Review of recent developments in fire detection technologies. Journal of Fire Protection Engineering, 13(2), 129–151.

    Article  Google Scholar 

  60. Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world’s worst invasive alien species: A selection from the global invasive species database (Vol. 12). Auckland: Invasive Species Specialist Group.

    Google Scholar 

  61. Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63–105.

    Article  Google Scholar 

  62. MacDonald, G. M. (2010). Water, climate change, and sustainability in the southwest. Proceedings of the National Academy of Sciences, 107(50), 21256–21262.

    Article  Google Scholar 

  63. Maki, M., Ishiahra, M., & Tamura, M. (2004). Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sensing of Environment, 90(4), 441–450.

    Article  Google Scholar 

  64. McKinley, D. C., Ryan, M. G., Birdsey, R. A., Giardina, C. P., Harmon, M. E., Heath, L. S., et al. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21(6), 1902–1924.

    Article  Google Scholar 

  65. Mell, W. E., Manzello, S. L., Maranghides, A., & Rehm, R. G. (2017). Wildland-urban interface fires: Overview and research needs. Tech. Rep.

    Google Scholar 

  66. Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17(8), 2145–2151.

    Article  Google Scholar 

  67. Millar, C. I., Swanston, C. W., & Peterson, D. L. (2014). Adapting to climate change. In Climate change and United States forests (pp. 183–222). New York: Springer.

    Chapter  Google Scholar 

  68. Newmark, R. L., Friedmann, S. J., & Carroll, S. A. (2010). Water challenges for geologic carbon capture and sequestration. Environmental Management, 45(4), 651–661.

    Article  Google Scholar 

  69. Norzaki, N., & Tahar, K. N. (2019). A comparative study of template matching, ISO cluster segmentation, and tree canopy segmentation for homogeneous tree counting. International Journal of Remote Sensing, 40(19), 7477–7499.

    Article  Google Scholar 

  70. Ovaskainen, O., Ramos, D. L., Slade, E. M., Merckx, T., Tikhonov, G., Pennanen, J., et al. (2019). Joint species movement modeling: How do traits influence movements? Ecology, 100(4), e02622.

    Article  Google Scholar 

  71. Palomino, J., & Kelly, M. (2019). Differing sensitivities to fire disturbance result in large differences among remotely sensed products of vegetation disturbance. Ecosystems, 1–20. https://doi.org/10.1007/s10021-019-00367-9

    Article  Google Scholar 

  72. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.

    Article  Google Scholar 

  73. Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (vol. 4). Cambridge: Cambridge University Press

    Google Scholar 

  74. Peplinski, N., Ulaby, F., & Dobson, M. (1995). Dielectric properties of soil in the 0.3–1.3 GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 803–807.

    Article  Google Scholar 

  75. Perlack, R. D., Eaton, L. M., Turhollow Jr, A. F., Langholtz, M. H., Brandt, C.C., Downing, M.E., et al. (2011). US billion-ton update: Biomass supply for a bioenergy and bioproducts industry

    Google Scholar 

  76. Piepenbring, M., Hofmann, T. A., Miranda, E., Cáceres, O., & Unterseher, M. (2015). Leaf shedding and weather in tropical dry-seasonal forest shape the phenology of fungi–lessons from two years of monthly surveys in southwestern Panama. Fungal Ecology, 18, 83–92.

    Article  Google Scholar 

  77. Prasad, A. M., Iverson, L. R., Peters, M. P., Bossenbroek, J. M., Matthews, S.N., Sydnor, T.D., et al. (2010). Modeling the invasive Emerald ash borer risk of spread using a spatially explicit cellular model. Landscape Ecology, 25(3), 353–369.

    Article  Google Scholar 

  78. Qualls, R. G., & Haines, B. L. (1992). Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Science Society of America Journal, 56(2), 578–586.

    Article  Google Scholar 

  79. Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H., Alexandre, P. M., Bar-Massada, A., et al. (2018). Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences, 115(13), 3314–3319.

    Article  Google Scholar 

  80. Rana, A. (2019). Exploratory data analysis of wildfires in USA. Ph.D. thesis, State University of New York at Buffalo

    Google Scholar 

  81. Rhodes, M., Tevs, N., & Puhalla, J.S. (2018). Sensor system for determining soil characteristics. US Patent App. 15/605,251.

    Google Scholar 

  82. Rolph, G. D., Draxler, R. R., Stein, A. F., Taylor, A., Ruminski, M. G., Kondragunta, S., et al. (2009). Description and verification of the NOAA smoke forecasting system: The 2007 fire season. Weather and Forecasting, 24(2), 361–378.

    Article  Google Scholar 

  83. Rose, S. K., & Sohngen, B. (2011). Global forest carbon sequestration and climate policy design. Environment and Development Economics, 16(4), 429–454.

    Article  Google Scholar 

  84. Salam, A., Vuran, M. C., & Irmak, S. (2016). Pulses in the sand: Impulse response analysis of wireless underground channel. In Proceedings of the INFOCOM 2016, San Francisco.

    Google Scholar 

  85. San Juan, R. F. D. V., & Domingo-Santos, J. M. (2018). The role of GIS and LiDAR as tools for sustainable forest management. GIS—An Overview of Applications, 1, 124–148.

    Google Scholar 

  86. Saxe, H., Ellsworth, D. S., & Heath, J. (1998). Tree and forest functioning in an enriched CO2 atmosphere. The New Phytologist, 139(3), 395–436.

    Article  Google Scholar 

  87. Schulte, P., Zeil, J., & Stürzl, W. (2019). An insect-inspired model for acquiring views for homing. Biological Cybernetics, 113, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  88. Schulze, E. D., Körner, C., Law, B. E., Haberl, H., & Luyssaert, S. (2012). Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 4(6), 611–616.

    Article  Google Scholar 

  89. Seely, B., Welham, C., & Kimmins, H. (2002). Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model, forecast. Forest Ecology and Management, 169(1–2), 123–135.

    Article  Google Scholar 

  90. Skaggs, R., Hibbard, K. A., Frumhoff, P., Lowry, T., Middleton, R., Pate, R., et al. (2012). Climate and energy-water-land system interactions technical report to the US department of energy in support of the national climate assessment. Tech. Rep., Pacific Northwest National Lab.(PNNL), Richland, WA

    Google Scholar 

  91. Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582. https://doi.org/10.1029/WR016i003p00574

    Article  Google Scholar 

  92. Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814–818.

    Article  Google Scholar 

  93. van Noordwijk, M., Duguma, L. A., Dewi, S., Leimona, B., Catacutan, D. C., Lusiana, B., et al. (2018). SDG synergy between agriculture and forestry in the food, energy, water and income nexus: Reinventing agroforestry? Current Opinion in Environmental Sustainability, 34, 33–42.

    Article  Google Scholar 

  94. Vano, J. A., Miller, K., Dettinger, M. D., Cifelli, R., Curtis, D., Dufour, A., et al. (2019). Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville Dam and Hurricane Harvey. Bulletin of the American Meteorological Society, 100(1), S9–S14.

    Article  Google Scholar 

  95. Waldron, A., Garrity, D., Malhi, Y., Girardin, C., Miller, D., & Seddon, N. (2017). Agroforestry can enhance food security while meeting other sustainable development goals. Tropical Conservation Science, 10, 1940082917720667.

    Article  Google Scholar 

  96. Wang, L., Gong, P., & Biging, G. S. (2004). Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogrammetric Engineering & Remote Sensing, 70(3), 351–357.

    Article  Google Scholar 

  97. Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N., Verardo, D. J., Dokken, D. J., et al. (2000). Land use, land-use change and forestry: A special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  98. Wear, D. N., & Joyce, L. A. (2012). Climate change, human communities, and forests in rural, urban, and wildland-urban interface environments. In J. M. Vose, D. L. Peterson, & T. Patel-Weynand (Eds.) Effects of climatic variability and change on forest ecosystems: A comprehensive science synthesis for the US forest sector. Gen. Tech. Rep. PNW-GTR-870. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Chapter 3 (Vol. 870, pp. 97–123)

    Google Scholar 

  99. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science, 313(5789), 940–943.

    Article  Google Scholar 

  100. White, A. R. (2019). Human expertise in the interpretation of remote sensing data: A cognitive task analysis of forest disturbance attribution. International Journal of Applied Earth Observation and Geoinformation, 74, 37–44.

    Article  Google Scholar 

  101. Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., et al. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292.

    Article  Google Scholar 

  102. Xiao, W., Zaforemska, A., Smigaj, M., Wang, Y., & Gaulton, R. (2019). Mean shift segmentation assessment for individual forest tree delineation from airborne LiDAR data. Remote Sensing, 11(11), 1263.

    Article  Google Scholar 

  103. Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., et al. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878.

    Article  Google Scholar 

  104. Yavari, F., & Sohrabi, H. (2019). Estimation of available canopy fuel of coppice oak stands using low-density airborne laser scanning (LIDAR) data. In Advances in remote sensing and geo informatics applications (pp. 171–173). New York: Springer.

    Chapter  Google Scholar 

  105. Zhao, G., Shao, G., Reynolds, K. M., Wimberly, M. C., Warner, T., Moser, J. W., et al. (2005). Digital forestry: A white paper. Journal of Forestry, 103(1), 47–50.

    Google Scholar 

  106. Zhao, K., García, M., Liu, S., Guo, Q., Chen, G., Zhang, X., et al. (2015). Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution. Agricultural and Forest Meteorology, 209, 100–113.

    Article  Google Scholar 

  107. Ziska, L. H. (2003). Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. Journal of Experimental Botany, 54(381), 395–404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A. (2020). Internet of Things for Sustainable Forestry. In: Internet of Things for Sustainable Community Development. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-35291-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35291-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35290-5

  • Online ISBN: 978-3-030-35291-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics