Skip to main content

Internet of Things for Sustainable Community Development: Introduction and Overview

  • Chapter
  • First Online:
Internet of Things for Sustainable Community Development

Part of the book series: Internet of Things ((ITTCC))

Abstract

The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ITU-T Rec. Y.2060 (06/2012) Overview of the Internet of things.

  2. 2.

    IT4IT References Architecture—ISO/IEC JTC1 WG10.

  3. 3.

    IETF.

  4. 4.

    NIST.

References

  1. 2413-2019 - IEEE approved draft standard for an architectural framework for the Internet of Things (IoT). https://standards.ieee.org/project/2413.html

  2. Akyildiz, I. F., & Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks Journal, 4, 669–686.

    Article  Google Scholar 

  3. Akyildiz, I. F., Sun, Z., & Vuran, M. C. (2009). Signal propagation techniques for wireless underground communication networks. Physical Communication Journal, 2(3), 167–183.

    Article  Google Scholar 

  4. Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable Cities and Society, 49, 101608.

    Article  Google Scholar 

  5. Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R. (2018). Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Transactions on Sustainable Computing, 4(1), 88–95.

    Article  Google Scholar 

  6. Bacco, M., Boero, L., Cassara, P., Colucci, M., Gotta, A., Marchese, M., et al. (2019). IoT applications and services in space information networks. IEEE Wireless Communications, 26(2), 31–37.

    Article  Google Scholar 

  7. Basagni, S., Di Valerio, V., Gjanci, P., & Petrioli, C. (2017). Finding MARLIN: Exploiting multi-modal communications for reliable and low-latency underwater networking. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications (pp. 1–9). New York: IEEE.

    Google Scholar 

  8. Bassi, A., Bauer, M., Fiedler, M., & Kranenburg, R.V. (2013). Enabling things to talk. Berlin: Springer.

    Book  Google Scholar 

  9. Beier, G., Niehoff, S., & Xue, B. (2018). More sustainability in industry through industrial internet of things? Applied Sciences, 8(2), 219.

    Article  Google Scholar 

  10. Berke, S. (2019). The sustainable development of data-driven smart cities: Citizen-centered urban governance and networked digital technologies. Geopolitics, History, and International Relations, 11(2), 122–127.

    Google Scholar 

  11. Bluetooth, S. (2019). History of the Bluetooth special interest group.

    Google Scholar 

  12. Chandrasekharan, S., Gomez, K., Al-Hourani, A., Kandeepan, S., Rasheed, T., Goratti, L., et al. (2016). Designing and implementing future aerial communication networks. IEEE Communications Magazine, 54(5), 26–34.

    Article  Google Scholar 

  13. Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., & Vinci, A. (2019). The Internet of Things for smart urban ecosystems. New York: Springer.

    Book  Google Scholar 

  14. Council, N. R. (2013). Sustainability for the nation: Resource connections and governance linkages. Washington: National Academies Press.

    Google Scholar 

  15. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  16. Dale, V., Lowrance, R., Mulholland, P., & Robertson, G. (2010). Bioenergy sustainability at the regional scale. Ecology and Society, 15(4), 23.

    Article  Google Scholar 

  17. Demirors, E., Shankar, B. G., Satagati, G. E., & Melodia, T. (2015). SEANet: A software-defined acoustic networking framework for reconfigurable underwater networking. In Proceedings of the 10th International Conference on Underwater Networks & Systems (p. 11). New York: ACM.

    Google Scholar 

  18. Ding, G., Wu, Q., Zhang, L., Lin, Y., Tsiftsis, T. A., & Yao, Y.D. (2018). An amateur drone surveillance system based on the cognitive internet of things. IEEE Communications Magazine, 56(1), 29–35.

    Article  Google Scholar 

  19. Dong, X., Vuran, M. C., Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11(7), 1975–1987. http://dx.doi.org/10.1016/j.adhoc.2012.06.012

    Article  Google Scholar 

  20. Elhayatmy, G., Dey, N., & Ashour, A. S. (2018). Internet of things based wireless body area network in healthcare. In Internet of things and big data analytics toward next-generation intelligence (pp. 3–20). New York: Springer.

    Chapter  Google Scholar 

  21. FCC spectrum. https://www.fcc.gov/tags/spectrum-0

  22. Flynn, K. The mobile broadband standard. https://www.3gpp.org/news-events/3gpp-news/1929-nsa_nr_5g

  23. Fortino, G., Gravina, R., Li, W., Hassan, M. M., & Liotta, A. (2015). Enhancing internet and distributed computing systems with wireless sensor networks. International Journal of Distributed Sensor Networks, 2015(11), 1–2.

    Article  Google Scholar 

  24. Fortino, G., Savaglio, C., Palau, C. E., de Puga, J. S., Ganzha, M., Paprzycki, M., et al. (2018). Towards multi-layer interoperability of heterogeneous IoT platforms: The INTER-IoT approach. In Integration, interconnection, and interoperability of IoT systems (pp. 199–232). New York: Springer.

    Chapter  Google Scholar 

  25. Garrity, J. (2015). Harnessing the internet of things for global development. Available at SSRN 2588129.

    Google Scholar 

  26. Godge, P., Gore, K., Gore, A., Jadhav, A., & Nawathe, A. (2019). Smart bus management and tracking system. International Journal of Latest Engineering Science, 2(2), 20–25.

    Google Scholar 

  27. Gravina, R., Palau, C. E., Manso, M., Liotta, A., & Fortino, G. (2018). Integration, interconnection, and interoperability of IoT systems. New York: Springer.

    Book  Google Scholar 

  28. Harnessing the internet of things for global development. https://www.itu.int/en/action/broadband/Documents/Harnessing-IoT-Global-Development.pdf

  29. Hong, I., Park, S., Lee, B., Lee, J., Jeong, D., & Park, S. (2014). IoT-based smart garbage system for efficient food waste management. The Scientific World Journal, 2014, 13.

    Google Scholar 

  30. Hopkins, J., & Hawking, P. (2018). Big data analytics and IoT in logistics: A case study. The International Journal of Logistics Management, 29(2), 575–591.

    Article  Google Scholar 

  31. IEEE 802.11. http://www.ieee802.org/11/

  32. Internet of things: Aligning the ecosystem towards sustainable adoption. https://es.weforum.org/projects/internet-of-things-aligning-the-ecosystem-towards-sustainable-adoption

  33. Internet of things architecture - www.iotforum.org. https://iotforum.org/wp-content/uploads/2014/09/D1.5-20130715-VERYFINAL.pdf

  34. Internet of things: Standards and guidance from the IETF. https://www.ietfjournal.org/internet-of-things-standards-and-guidance-from-the-ietf/

  35. IoT & sustainability: Practice, policy and promise. http://citris-uc.org/wp-content/uploads/2016/07/CITRIS_IoT-and-Sustainability-White-Paper.pdf

  36. ITU-T Rec. Y.2060 (06/2012) overview of the internet of things. https://www.itu.int/rec/T-REC-Y.2060-201206-I

  37. Jackson, L. E., Kurtz, J., & Fisher, W. S. (2000). Evaluation Guidelines for Ecological Indicators.

    Google Scholar 

  38. Keeble, B. R. (1988). The Brundtland report: ‘our common future’. Medicine and War, 4(1), 17–25.

    Article  Google Scholar 

  39. Khanna, A., & Tomar, R. (2016). IoT based interactive shopping ecosystem. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (pp. 40–45). New York: IEEE.

    Chapter  Google Scholar 

  40. Kim, H. S., Kumar, S., & Culler, D. E. (2019). Thread/OpenThread: A compromise in low-power wireless multihop network architecture for the internet of things. IEEE Communications Magazine, 57(7), 55–61.

    Article  Google Scholar 

  41. Leleux, B., & van der Kaaij, J. (2019). Sustainable development goals. In Winning Sustainability Strategies (pp. 81–102). New York: Springer.

    Chapter  Google Scholar 

  42. Li, D., Yao, Y., Shao, Z., & Wang, L. (2014). From digital earth to smart earth. Chinese Science Bulletin, 59(8), 722–733.

    Article  Google Scholar 

  43. Li, Y., Huang, X., & Wang, S. (2019). Multiple protocols interworking with open connectivity foundation in fog networks. IEEE Access, 7, 60764–60773.

    Article  Google Scholar 

  44. Liolis, K., Geurtz, A., Sperber, R., Schulz, D., Watts, S., Poziopoulou, G., et al. (2019). Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach. International Journal of Satellite Communications and Networking, 37(2), 91–112.

    Article  Google Scholar 

  45. Liu, Y., Yang, C., Jiang, L., Xie, S., & Zhang, Y. (2019). Intelligent edge computing for IoT-based energy management in smart cities. IEEE Network, 33(2), 111–117.

    Article  Google Scholar 

  46. Long term evolution for machines: LTE-M. https://www.gsma.com/iot/long-term-evolution-machine-type-communication-lte-mtc-cat-m1/

  47. Maksimovic, M. (2018). Greening the future: Green internet of things (G-IoT) as a key technological enabler of sustainable development. In Internet of things and big data analytics toward next-generation intelligence (pp. 283–313). New York: Springer.

    Chapter  Google Scholar 

  48. Materese, R. (2019). Internet of things (IoT). https://www.nist.gov/topics/internet-things-iot

    Google Scholar 

  49. Merkulov, A. G., & Shuvalov, V. P. (2019). The perspectives and practice of PLC HomePlug AV modems application in the network devices and industrial tools. In 2019 1st Global Power, Energy and Communication Conference (GPECOM) (pp. 46–49). New York: IEEE.

    Chapter  Google Scholar 

  50. Mikhaylov, K., Petrov, V., Gupta, R., Lema, M. A., Galinina, O., Andreev, S., et al. (2019). Energy efficiency of multi-radio massive machine-type communication (MR-MMTC): Applications, challenges, and solutions. IEEE Communications Magazine, PP(99), 1–7.

    Google Scholar 

  51. Nandi, S., Thota, S., Nag, A., Divyasukhananda, S., Goswami, P., Aravindakshan, A., et al. (2016). Computing for rural empowerment: Enabled by last-mile telecommunications. IEEE Communications Magazine, 54(6), 102–109.

    Article  Google Scholar 

  52. Pang, H. Y., Agarwal, R., & Donaldson, T. A.: RF architecture utilizing a MIMO chipset for near field proximity sensing and communication (2019). US Patent App. 10/211,889.

    Google Scholar 

  53. Salam, A., & Shah, S. (2019). Urban underground infrastructure monitoring IoT: The path loss analysis. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (WF-IoT 2019), Limerick.

    Google Scholar 

  54. Salam, A., & Vuran, M. C. (2016). Impacts of soil type and moisture on the capacity of multi-carrier modulation in internet of underground things. In Proceedings of the 25th ICCCN 2016, Waikoloa, HI.

    Google Scholar 

  55. Salam, A., & Vuran, M. C. (2017). Smart underground antenna arrays: A soil moisture adaptive beamforming approach. In Proceedings of the IEEE INFOCOM 2017, Atlanta.

    Google Scholar 

  56. Salam, A., & Vuran, M. C. (2017). Wireless underground channel diversity reception with multiple antennas for internet of underground things. In Proceedings of the IEEE ICC 2017, Paris.

    Google Scholar 

  57. Salam, A., Vuran, M. C., & Irmak, S. (2016). Pulses in the sand: Impulse response analysis of wireless underground channel. In Proceedings of the IEEE INFOCOM 2016, San Francisco.

    Google Scholar 

  58. Salam, A., Vuran, M. C., & Irmak, S. (2017). Towards internet of underground things in smart lighting: A statistical model of wireless underground channel. In Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control (IEEE ICNSC), Calabria.

    Google Scholar 

  59. Schneider, A. (2019). Internet of Things and Sustainability: A Comprehensive Framework.

    Google Scholar 

  60. Schneider, S. (2019). The impacts of digital technologies on innovating for sustainability. In Innovation for sustainability (pp. 415–433). New York: Springer.

    Chapter  Google Scholar 

  61. Simmhan, Y., Ravindra, P., Chaturvedi, S., Hegde, M., & Ballamajalu, R. (2018). Towards a data-driven IoT software architecture for smart city utilities. Software: Practice and Experience, 48(7), 1390–1416.

    Google Scholar 

  62. Singh, S., Singh, B., Singh, B., Das, A. (2019). Automatic vehicle counting for IoT based smart traffic management system for Indian urban settings. In 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU) (pp. 1–6). New York: IEEE.

    Google Scholar 

  63. Solmaz, G., Wu, F. J., Cirillo, F., Kovacs, E., Santana, J.R., Sanchez, L., et al. (2019). Toward understanding crowd mobility in smart cities through the internet of things. IEEE Communications Magazine, 57(4), 40–46.

    Article  Google Scholar 

  64. Song, W., Wang, Y., Huang, D., Liotta, A., & Perra, C. (2019). Enhancement of underwater images with statistical model of background light and optimization of transmission map. Preprint. arXiv:1906.08673.

    Google Scholar 

  65. Stead, M. R., Coulton, P., Lindley, J. G., & Coulton, C. (2019). The little book of sustainability for the internet of things.

    Google Scholar 

  66. Sustainable development goals. https://www.undp.org/content/undp/en/home/sustainable-development-goals.html

  67. Sustainable development impact summit. https://www.weforum.org/events/sustainable-development-impact-summit-2019

  68. Sustainability, smart cities, and the internet of things (2017). https://www.brookings.edu/events/sustainability-smart-cities-and-the-internet-of-things/

  69. Swamy, V. N., Rigge, P., Ranade, G., Nikolić, B., & Sahai, A. (2019). Wireless channel dynamics and robustness for ultra-reliable low-latency communications. IEEE Journal on Selected Areas in Communications, 37(4), 705–720.

    Article  Google Scholar 

  70. Tan, X., Sun, Z., & Akyildiz, I. F. (2015). Wireless underground sensor networks: Mi-based communication systems for underground applications. IEEE Antennas and Propagation Magazine, 57(4). https://doi.org/10.1109/MAP.2015.2453917

    Article  Google Scholar 

  71. The 2030 agenda for sustainable development. https://sustainabledevelopment.un.org/content/documents/21252030AgendaforSustainableDevelopmentweb.pdf

  72. The effect of the internet of things on sustainability (2018). https://iot-analytics.com/effect-iot-sustainability/

  73. The voice of 5G and LTE for the Americas. https://www.5gamericas.org/

  74. Tiusanen, M. J. (2013). Soil scouts: Description and performance of single hop wireless underground sensor nodes. Ad Hoc Networks, 11(5), 1610–1618. http://dx.doi.org/10.1016/j.adhoc.2013.02.002

    Article  Google Scholar 

  75. Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2018). Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Computing, 21(1), 681–690.

    Article  Google Scholar 

  76. Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254. https://doi.org/10.1016/j.phycom.2010.07.001

    Article  Google Scholar 

  77. Vuran, M. C., Salam, A., Wong, R., & Irmak, S. (2018). Internet of underground things: Sensing and communications on the field for precision agriculture. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (WF-IoT 2018), Singapore.

    Google Scholar 

  78. Wang, Y., Song, W., Fortino, G., Qi, L. Z., Zhang, W., & Liotta, A. (2019). An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access, 7, 140233–140251. https://doi.org/10.1109/ACCESS.2019.2932130

    Article  Google Scholar 

  79. Wg 10 (2019). https://jtc1info.org/sd_2-history_of_jtc1/jtc1-scs-and-groups/wg-10/

  80. Yao, M., Sohul, M., Marojevic, V., & Reed, J. H. (2019). Artificial intelligence defined 5G radio access networks. IEEE Communications Magazine, 57(3), 14–20.

    Article  Google Scholar 

  81. Zhang, C., Zhang, W., Wang, W., Yang, L., & Zhang, W. (2019). Research challenges and opportunities of UAV millimeter-wave communications. IEEE Wireless Communications, 26(1), 58–62.

    Article  Google Scholar 

  82. Zhang, J., Kang, K., Huang, Y., Shafi, M., & Molisch, A. F. (2019). Millimeter and THz wave for 5G and beyond. China Communications, 16(2), iii–vi.

    Article  Google Scholar 

  83. Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., et al. (2019). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3), 28–41.

    Article  Google Scholar 

  84. Zhu, N., & Zhao, H. (2018). IoT applications in the ecological industry chain from information security and smart city perspectives. Computers & Electrical Engineering, 65, 34–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A. (2020). Internet of Things for Sustainable Community Development: Introduction and Overview. In: Internet of Things for Sustainable Community Development. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-35291-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35291-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35290-5

  • Online ISBN: 978-3-030-35291-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics