Skip to main content

Using Feature Filtering Metrics as Meta-dimensions in Constructing Distributional Representations

  • Conference paper
  • First Online:
AI 2019: Advances in Artificial Intelligence (AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11919))

Included in the following conference series:

  • 2103 Accesses

Abstract

Feature filtering aims to find useful and relevant features for improvement of machine learning performance, reduction of computation complexity, and disclosure of internal information interaction. We employ some popular filtering criteria as meta-dimensions for the construction of feature space, where a word or a document can be represented with significantly reduced dimensionality. The experiment results show that the meta-feature data representation we proposed requires no extra resources on pre-training to derive word embeddings, and outperforms other traditional frequency-based or learning-based embeddings in the task of sentiment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mladenić, D., Grobelnik, M.: Feature Selection for Unbalanced Class Distribution and Naive Bayes, pp. 258–267 (1999)

    Google Scholar 

  2. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  3. Bengio, Y., et al.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  4. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing, 680 p. (1999)

    Google Scholar 

  5. Wiechmann, D.: On the computation of construction strength: testing measures of association as expressions of lexical bias. Corpus Linguist. Lingustic Theory 4, 253–290 (2008)

    Google Scholar 

  6. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  7. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: ICML, pp. 412–420 (1997)

    Google Scholar 

  8. Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  9. Collobert, R., et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  10. Pennington, J., Socher, R., Manning, C.: Glove: Global Vectors for Word Representation, vol. 14, pp. 1532–1543 (2014)

    Google Scholar 

  11. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: NIPS, pp. 2177–2185 (2014)

    Google Scholar 

  12. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: ACL, pp. 238–247 (2014)

    Google Scholar 

  13. Faruqui, M., et al.: Retrofitting Word Vectors to Semantic Lexicons (2014)

    Google Scholar 

  14. Yu, M., Dredze, M.: Improving lexical embeddings with semantic knowledge. In: ACL, pp. 545–550 (2014)

    Google Scholar 

  15. Tang, D., et al.: Learning sentiment-specific word embedding for Twitter sentiment classification. In: ACL, pp. 1555–1565 (2014)

    Google Scholar 

  16. Kim, Y.: Convolutional Neural Networks for Sentence Classification (2014)

    Google Scholar 

  17. Conneau, A., et al.: Very deep convolutional networks for text classification. In: EACL, pp. 1107–1116 (2017)

    Google Scholar 

  18. Barnes, J., Klinger, R., Walde, S.S.I.: Assessing State-of-the-Art Sentiment Models on State-of-the-Art Sentiment Datasets (2017)

    Google Scholar 

  19. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisc. Rev.: Data Mining Knowl. Discov. 8(4), e1253 (2018)

    Google Scholar 

  20. McCann, B., et al.: Learned in translation: contextualized word vectors. In: NIPS, pp. 6297–6308 (2017)

    Google Scholar 

  21. Peters, M.E., et al.: Deep contextualized word representations. In: NAACL 2018, pp. 2227–2237 (2018)

    Google Scholar 

  22. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: ACL (2018)

    Google Scholar 

  23. Devlin, J., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2018)

    Google Scholar 

  24. Zheng, Z., Xiaoyun, W., Srihari, R.: Feature selection for text categorization on imbalanced data. SIGKDD Explor. Newsl. 6(1), 80–89 (2004)

    Article  Google Scholar 

  25. Zipf, G.K.: Human behavior and the principle of least effort: an introduction to human ecology. Facsim. of 1949 ed, 573 p. (1965)

    Google Scholar 

  26. Jones, K.S.: Automatic summarising: factors and directions. In: Advances in Automatic Text Summarization (1998)

    Google Scholar 

  27. Deerwester, S.C., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  28. Socher, R., et al.: Parsing natural scenes and natural language with recursive neural networks. In: ICML, pp. 129–136 (2011)

    Google Scholar 

  29. Maas, A.L., et al.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150 (2011)

    Google Scholar 

  30. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: EMNLP, pp. 1422–1432 (2015)

    Google Scholar 

  31. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT-EMNLP, pp. 347–354 (2005)

    Google Scholar 

  32. Mikolov, T., et al.: Efficient Estimation of Word Representations in Vector Space (2013)

    Google Scholar 

  33. Radford, A., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  34. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, pp. 1188–1196 (2014)

    Google Scholar 

  35. Johnson, R., Zhang, T.: Supervised and semi-supervised text categorization using LSTM for region embeddings. In: ICML, pp. 526–534 (2016)

    Google Scholar 

  36. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial Training Methods for Semi-Supervised Text Classification (2017)

    Google Scholar 

  37. Xie, Q., et al.: Unsupervised Data Augmentation for Consistency Training. eprint arXiv:190412848 (2019)

  38. Liu, Y., Lapata, M.: Learning structured text representations. Trans. Assoc. Comput. Linguist. 6, 63–75 (2018)

    Article  Google Scholar 

  39. Yang, Z., et al.: Hierarchical attention networks for document classification. In: HLT-NAACL, pp. 1480–1489 (2016)

    Google Scholar 

  40. Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in neural language models. In: International Conference on Learning Representations (2018)

    Google Scholar 

  41. Zilly, J.G., et al.: Recurrent highway networks. In: ICML, pp. 4189–4198 (2017)

    Google Scholar 

  42. Zoph, B., Le, Q.V.: Neural Architecture Search with Reinforcement Learning. arXiv e-prints arXiv:161101578Z (2016)

  43. Lipton, Z.C., Steinhardt, J.: Troubling Trends in Machine Learning Scholarship. arXiv e-prints arXiv:180703341L (2018)

  44. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: ICLR (2019)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the National Social Science Foundation of China (Grant No. 17BYY119) and the Humanity and Social Science Foundation of China Ministry of Education (Grant No. 15YJA740054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqiang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D., Yin, Y., Han, T., Ma, H. (2019). Using Feature Filtering Metrics as Meta-dimensions in Constructing Distributional Representations. In: Liu, J., Bailey, J. (eds) AI 2019: Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science(), vol 11919. Springer, Cham. https://doi.org/10.1007/978-3-030-35288-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35288-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35287-5

  • Online ISBN: 978-3-030-35288-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics