Advertisement

Fluid Dynamics in Healthcare Industries: Computational Intelligence Prospective

  • Vishwanath Panwar
  • Sampath Emani
  • Seshu Kumar VandrangiEmail author
  • Jaseer Hamza
  • Gurunadh Velidi
Chapter
  • 280 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 875)

Abstract

The main aim of this study is to discuss and critically review the concept of computational intelligence in relation to the context of fluid dynamics in healthcare industries. The motivation or specific objective is to discern how, in the recent past, scholarly investigations have yielded insights into the CI concept as that which is shaping the understanding of fluid dynamics in healthcare. Also, the study strives to predict how CI might shape fluid dynamics understanding in the future of healthcare industries. From the secondary sources of data that have been consulted, it is evident that the CI concept is gaining increasing adoption and application in healthcare fluid dynamics. Some of the specific areas where it has been applied include the determination of occlusion device performance, the determination of device safety in cardiovascular medicine, the determination of optimal ventilation system designs in hospital cleanrooms and operating rooms, and the determination of the efficacy of intra-arterial chemotherapy for cancer patients; especially relative to patient vessel geometries. Other areas include analyzing idealized medical devices from the perspective of inter-laboratory studies and how the CI techniques could inform healthcare decisions concerning the management of unruptured intracranial aneurysms. In the future, the study recommends the need for further understanding of some of the challenges that CI-based approaches face when other moderating factors (such as patients presenting with multiple conditions) face and how they could be mitigated to assure their efficacy for use in the healthcare fluid dynamics context.

Keywords

Fluid dynamics Health-care Medicine Computational intelligence 

References

  1. 1.
    Morris, P. D., Ryan, D., Morton, A. C., Lycett, R., Lawford, P. V., Hose, D. R., et al. (2013). Virtual fractional flow reserve from coronary angiography: Modeling the significance of coronary lesions: Results from the VIRTU-1 (VIRTUal fractional flow reserve from coronary angiography) study. JACC: Cardiovascular Interventions, 6(2), 149–157.Google Scholar
  2. 2.
    Tu, S., Barbato, E., Köszegi, Z., Yang, J., Sun, Z., Holm, N. R., et al. (2014). Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC: Cardiovascular Interventions, 7(7), 768–777.Google Scholar
  3. 3.
    Nørgaard, B. L., Gaur, S., Leipsic, J., Ito, H., Miyoshi, T., Park, S.-J., et al. (2015). Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: A substudy of the NXT trial. JACC: Cardiovascular Imaging, 8(9), 1045–1055.Google Scholar
  4. 4.
    Erhart, P., Hyhlik-Dürr, A., Geisbüsch, P., Kotelis, D., Müller-Eschner, M., Gasser, T. C., et al. (2015). Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: In search of new rupture risk predictors. JACC: Cardiovascular Imaging, 49(3), 239–245.Google Scholar
  5. 5.
    Morris, P. D., van de Vosse, F. N., Lawford, P. V., Hose, D. R., & Gunn, J. P. (2015). “Virtual” (computed) fractional flow reserve: Current challenges and limitations. JACC: Cardiovascular Interventions, 8(8), 1009–1017.Google Scholar
  6. 6.
    Morlacchi, S., & Migliavacca, F. (2013). Modeling stented coronary arteries: Where we are, where to go. Annals of Biomedical Engineering, 41(7), 1428–1444.CrossRefGoogle Scholar
  7. 7.
    Peach, T., Ngoepe, M., Spranger, K., Zajarias-Fainsod, D., & Ventikos, Y. (2014). Personalizing flow-diverter intervention for cerebral aneurysms: From computational hemodynamics to biochemical modeling. International Journal for Numerical Methods in Biomedical Engineering, 30(11), 1387–1407.CrossRefGoogle Scholar
  8. 8.
    Qureshi, M. U., Vaughan, G. D., Sainsbury, C., Johnson, M., Peskin, C. S., Olufsen, M. S., et al. (2014). Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomechanics and Modeling in Mechanobiology, 13(5), 1137–1154.CrossRefGoogle Scholar
  9. 9.
    Schneiders, J., Marquering, H., Van Ooij, P., Van den Berg, R., Nederveen, A., Verbaan, D., et al. (2015). Additional value of intra-aneurysmal hemodynamics in discriminating ruptured versus unruptured intracranial aneurysms. American Journal of Neuroradiology, 36(10), 1920–1926.CrossRefGoogle Scholar
  10. 10.
    Lungu, A., Wild, J., Capener, D., Kiely, D., Swift, A., & Hose, D. (2014). MRI model-based non-invasive differential diagnosis in pulmonary hypertension. Journal of Biomechanics, 47(12), 2941–2947.CrossRefGoogle Scholar
  11. 11.
    Kheyfets, V. O., Rios, L., Smith, T., Schroeder, T., Mueller, J., Murali, S., et al. (2015). Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Computer Methods and Programs in Biomedicine, 120(2), 88–101.CrossRefGoogle Scholar
  12. 12.
    Bertoglio, C., Barber, D., Gaddum, N., Valverde, I., Rutten, M., Beerbaum, P., et al. (2014). Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model. Journal of Biomechanics, 47(5), 1027–1034.CrossRefGoogle Scholar
  13. 13.
    Sonntag, S. J., Li, W., Becker, M., Kaestner, W., Büsen, M. R., Marx, N., et al. (2014). Combined computational and experimental approach to improve the assessment of mitral regurgitation by echocardiography. Annals of Biomedical Engineering, 42(5), 971–985.CrossRefGoogle Scholar
  14. 14.
    Bluestein, D., Einav, S., & Slepian, M. J. (2013). Device thrombogenicity emulation: A novel methodology for optimizing the thromboresistance of cardiovascular devices. Journal of Biomechanics, 46(2), 338–344.CrossRefGoogle Scholar
  15. 15.
    Chiu, W.-C., Girdhar, G., Xenos, M., Alemu, Y., Soares, J. S., Einav, S., et al. (2014). Thromboresistance comparison of the HeartMate II ventricular assist device with the device thrombogenicity emulation-optimized HeartAssist 5 VAD. Journal of Biomechanical Engineering, 136(2), 021014.CrossRefGoogle Scholar
  16. 16.
    Farag, M. B., Karmonik, C., Rengier, F., Loebe, M., Karck, M., von Tengg-Kobligk, H., et al. (2014). Review of recent results using computational fluid dynamics simulations in patients receiving mechanical assist devices for end-stage heart failure. Methodist DeBakey Cardiovascular Journal, 10(3), 185.CrossRefGoogle Scholar
  17. 17.
    Homma, A., Onimaru, R., Matsuura, K., Robbins, K. T., & Fujii, M. (2015). Intra-arterial chemoradiotherapy for head and neck cancer. Japanese Journal of Clinical Oncology, 46(1), 4–12.CrossRefGoogle Scholar
  18. 18.
    Martufi, G., & Gasser, T. C. (2013). The role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. Journal of Biomechanical Engineering, 135(2), 021010.CrossRefGoogle Scholar
  19. 19.
    Hariharan, P., Giarra, M., Reddy, V., Day, S., Manning, K., Deutsch, S., et al. (2011). Experimental particle image velocimetry protocol and results database for validating computational fluid dynamic simulations of the FDA benchmark nozzle model. Journal of Biomechanical Engineering, 133, 041002.CrossRefGoogle Scholar
  20. 20.
    Ohhara, Y., Oshima, M., Iwai, T., Kitajima, H., Yajima, Y., Mitsudo, K., et al. (2016). Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model. Biomedical Engineering Online, 15(1), 16.CrossRefGoogle Scholar
  21. 21.
    Pant, S., Bressloff, N. W., Forrester, A. I., & Curzen, N. (2010). The influence of strut-connectors in stented vessels: A comparison of pulsatile flow through five coronary stents. Annals of Biomedical Engineering, 38(5), 1893–1907.CrossRefGoogle Scholar
  22. 22.
    Xenos, M., Girdhar, G., Alemu, Y., Jesty, J., Slepian, M., Einav, S., et al. (2010). Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: A study in two bileaflet MHV designs. Journal of Biomechanics, 43(12), 2400–2409.CrossRefGoogle Scholar
  23. 23.
    Wu, J., Paden, B. E., Borovetz, H. S., & Antaki, J. F. (2010). Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artificial Organs, 34(5), 402–411.CrossRefGoogle Scholar
  24. 24.
    Ansaloni, L., Coccolini, F., Morosi, L., Ballerini, A., Ceresoli, M., Grosso, G., et al. (2015). Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. British Journal of Cancer, 112(2), 306.CrossRefGoogle Scholar
  25. 25.
    Au, J. L.-S., Guo, P., Gao, Y., Lu, Z., Wientjes, M. G., Tsai, M., et al. (2014). Multiscale tumor spatiokinetic model for intraperitoneal therapy. The AAPS Journal, 16(3), 424–439.CrossRefGoogle Scholar
  26. 26.
    Bhandari, A., Bansal, A., Singh, A., & Sinha, N. (2017). Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. Journal of Biomechanics, 59, 80–89.CrossRefGoogle Scholar
  27. 27.
    Barnes, S. L., Whisenant, J. G., Loveless, M. E., & Yankeelov, T. E. (2012). Practical dynamic contrast enhanced MRI in small animal models of cancer: Data acquisition, data analysis, and interpretation. Pharmaceutics, 4(3), 442–478.CrossRefGoogle Scholar
  28. 28.
    Bhandari, A., Bansal, A., Jain, R., Singh, A., & Sinha, N. (2019). Effect of tumor volume on drug delivery in heterogeneous vasculature of human brain tumors. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2(2), 021004.CrossRefGoogle Scholar
  29. 29.
    Goodman, M. D., McPartland, S., Detelich, D., & Saif, M. W. (2016). Chemotherapy for intraperitoneal use: A review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy. Journal of Gastrointestinal Oncology, 7(1), 45.Google Scholar
  30. 30.
    De Vlieghere, E., Carlier, C., Ceelen, W., Bracke, M., & De Wever, O. (2016). Data on in vivo selection of SK-OV-3 Luc ovarian cancer cells and intraperitoneal tumor formation with low inoculation numbers. Data in Brief, 6, 542–549.CrossRefGoogle Scholar
  31. 31.
    Gremonprez, F., Descamps, B., Izmer, A., Vanhove, C., Vanhaecke, F., De Wever, O., et al. (2015). Pretreatment with VEGF (R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. Oncotarget, 6(30), 29889.CrossRefGoogle Scholar
  32. 32.
    Stachowska-Pietka, J., Waniewski, J., Flessner, M. F., & Lindholm, B. (2012). Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: A spatially distributed approach. American Journal of Physiology-Renal Physiology, 302(10), F1331–F1341.CrossRefGoogle Scholar
  33. 33.
    Steuperaert, M., Debbaut, C., Segers, P., & Ceelen, W. (2017). Modelling drug transport during intraperitoneal chemotherapy. Pleura and Peritoneum, 2(2), 73–83.CrossRefGoogle Scholar
  34. 34.
    Kim, M., Gillies, R. J., & Rejniak, K. A. (2013). Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Frontiers in Oncology, 3, 278.Google Scholar
  35. 35.
    Magdoom, K., Pishko, G. L., Kim, J. H., & Sarntinoranont, M. (2012). Evaluation of a voxelized model based on DCE-MRI for tracer transport in tumor. Journal of Biomechanical Engineering, 134(9), 091004.CrossRefGoogle Scholar
  36. 36.
    Steuperaert, M., Falvo D’Urso Labate, G., Debbaut, C., De Wever, O., Vanhove, C., Ceelen, W., et al. (2017). Mathematical modeling of intraperitoneal drug delivery: Simulation of drug distribution in a single tumor nodule. Drug Delivery, 24(1), 491–501.CrossRefGoogle Scholar
  37. 37.
    Pishko, G. L., Astary, G. W., Mareci, T. H., & Sarntinoranont, M. (2011). Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Annals of Biomedical Engineering, 39(9), 2360.CrossRefGoogle Scholar
  38. 38.
    Stylianopoulos, T. (2017). The solid mechanics of cancer and strategies for improved therapy. Journal of Biomechanical Engineering, 139(2), 021004.CrossRefGoogle Scholar
  39. 39.
    Stylianopoulos, T., Martin, J. D., Chauhan, V. P., Jain, S. R., Diop-Frimpong, B., Bardeesy, N., et al. (2012). Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proceedings of the National Academy of Sciences, 109(38), 15101–15108.CrossRefGoogle Scholar
  40. 40.
    Barker, P. B., X. Golay, & Zaharchuk, G. (2013). Clinical perfusion MRI: Techniques and applications. Cambridge University Press.Google Scholar
  41. 41.
    Winner, K. R. K., Steinkamp, M. P., Lee, R. J., Swat, M., Muller, C. Y., Moses, M. E., et al. (2016). Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Research, 76(6), 1320–1334.CrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Furusawa, T., Sia, S. F., Umezu, M., & Qian, Y. (2013). Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation. Computer Methods in Biomechanics and Biomedical Engineering, 16(5), 488–494.CrossRefGoogle Scholar
  43. 43.
    Tabakova, S., Nikolova, E., & Radev, S. (2014). Carreau model for oscillatory blood flow in a tube. In AIP Conference Proceedings. AIP.Google Scholar
  44. 44.
    Zhan, W., Gedroyc, W., & Xu, X. Y. (2014). Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour. Journal of Physics D: Applied Physics, 47(47), 475401.CrossRefGoogle Scholar
  45. 45.
    Sui, B., Gao, P., Lin, Y., Jing, L., Sun, S., & Qin, H. (2015). Hemodynamic parameters distribution of upstream, stenosis center, and downstream sides of plaques in carotid artery with different stenosis: A MRI and CFD study. Acta Radiologica, 56(3), 347–354.CrossRefGoogle Scholar
  46. 46.
    Marsden, A. L., Bazilevs, Y., Long, C. C., & Behr, M. (2014). Recent advances in computational methodology for simulation of mechanical circulatory assist devices. Wiley Interdisciplinary Reviews: Systems Biology and Medicine., 6(2), 169–188.Google Scholar
  47. 47.
    Wu, J., Liu, G., Huang, W., Ghista, D. N., & Wong, K. K. (2015). Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Computer Methods in Biomechanics and Biomedical Engineering, 18(16), 1835–1845.CrossRefGoogle Scholar
  48. 48.
    Khader, A. S., Shenoy, S. B., Pai, R. B., Kamath, G. S., Sharif, N. M., & Rao, V. (2011). Effect of increased severity in patient specific stenosis of common carotid artery using CFD—A case study. World Journal of Modelling and Simulation, 7(2), 113–122.Google Scholar
  49. 49.
    Consolo, F., Dimasi, A., Rasponi, M., Valerio, L., Pappalardo, F., Bluestein, D., et al. (2016). Microfluidic approaches for the assessment of blood cell trauma: A focus on thrombotic risk in mechanical circulatory support devices. The International Journal of Artificial Organs, 39(4), 184–193.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vishwanath Panwar
    • 1
  • Sampath Emani
    • 2
  • Seshu Kumar Vandrangi
    • 3
    Email author
  • Jaseer Hamza
    • 3
  • Gurunadh Velidi
    • 4
  1. 1.VTU-RRCBelagaviIndia
  2. 2.Department of Chemical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  3. 3.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  4. 4.University of Petroleum and Energy StudiesDehradunIndia

Personalised recommendations