Advanced Computational Intelligence Techniques for Virtual Reality in Healthcare pp 107-122 | Cite as
Fluid Dynamics in Healthcare Industries: Computational Intelligence Prospective
- 280 Downloads
Abstract
The main aim of this study is to discuss and critically review the concept of computational intelligence in relation to the context of fluid dynamics in healthcare industries. The motivation or specific objective is to discern how, in the recent past, scholarly investigations have yielded insights into the CI concept as that which is shaping the understanding of fluid dynamics in healthcare. Also, the study strives to predict how CI might shape fluid dynamics understanding in the future of healthcare industries. From the secondary sources of data that have been consulted, it is evident that the CI concept is gaining increasing adoption and application in healthcare fluid dynamics. Some of the specific areas where it has been applied include the determination of occlusion device performance, the determination of device safety in cardiovascular medicine, the determination of optimal ventilation system designs in hospital cleanrooms and operating rooms, and the determination of the efficacy of intra-arterial chemotherapy for cancer patients; especially relative to patient vessel geometries. Other areas include analyzing idealized medical devices from the perspective of inter-laboratory studies and how the CI techniques could inform healthcare decisions concerning the management of unruptured intracranial aneurysms. In the future, the study recommends the need for further understanding of some of the challenges that CI-based approaches face when other moderating factors (such as patients presenting with multiple conditions) face and how they could be mitigated to assure their efficacy for use in the healthcare fluid dynamics context.
Keywords
Fluid dynamics Health-care Medicine Computational intelligenceReferences
- 1.Morris, P. D., Ryan, D., Morton, A. C., Lycett, R., Lawford, P. V., Hose, D. R., et al. (2013). Virtual fractional flow reserve from coronary angiography: Modeling the significance of coronary lesions: Results from the VIRTU-1 (VIRTUal fractional flow reserve from coronary angiography) study. JACC: Cardiovascular Interventions, 6(2), 149–157.Google Scholar
- 2.Tu, S., Barbato, E., Köszegi, Z., Yang, J., Sun, Z., Holm, N. R., et al. (2014). Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC: Cardiovascular Interventions, 7(7), 768–777.Google Scholar
- 3.Nørgaard, B. L., Gaur, S., Leipsic, J., Ito, H., Miyoshi, T., Park, S.-J., et al. (2015). Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: A substudy of the NXT trial. JACC: Cardiovascular Imaging, 8(9), 1045–1055.Google Scholar
- 4.Erhart, P., Hyhlik-Dürr, A., Geisbüsch, P., Kotelis, D., Müller-Eschner, M., Gasser, T. C., et al. (2015). Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: In search of new rupture risk predictors. JACC: Cardiovascular Imaging, 49(3), 239–245.Google Scholar
- 5.Morris, P. D., van de Vosse, F. N., Lawford, P. V., Hose, D. R., & Gunn, J. P. (2015). “Virtual” (computed) fractional flow reserve: Current challenges and limitations. JACC: Cardiovascular Interventions, 8(8), 1009–1017.Google Scholar
- 6.Morlacchi, S., & Migliavacca, F. (2013). Modeling stented coronary arteries: Where we are, where to go. Annals of Biomedical Engineering, 41(7), 1428–1444.CrossRefGoogle Scholar
- 7.Peach, T., Ngoepe, M., Spranger, K., Zajarias-Fainsod, D., & Ventikos, Y. (2014). Personalizing flow-diverter intervention for cerebral aneurysms: From computational hemodynamics to biochemical modeling. International Journal for Numerical Methods in Biomedical Engineering, 30(11), 1387–1407.CrossRefGoogle Scholar
- 8.Qureshi, M. U., Vaughan, G. D., Sainsbury, C., Johnson, M., Peskin, C. S., Olufsen, M. S., et al. (2014). Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomechanics and Modeling in Mechanobiology, 13(5), 1137–1154.CrossRefGoogle Scholar
- 9.Schneiders, J., Marquering, H., Van Ooij, P., Van den Berg, R., Nederveen, A., Verbaan, D., et al. (2015). Additional value of intra-aneurysmal hemodynamics in discriminating ruptured versus unruptured intracranial aneurysms. American Journal of Neuroradiology, 36(10), 1920–1926.CrossRefGoogle Scholar
- 10.Lungu, A., Wild, J., Capener, D., Kiely, D., Swift, A., & Hose, D. (2014). MRI model-based non-invasive differential diagnosis in pulmonary hypertension. Journal of Biomechanics, 47(12), 2941–2947.CrossRefGoogle Scholar
- 11.Kheyfets, V. O., Rios, L., Smith, T., Schroeder, T., Mueller, J., Murali, S., et al. (2015). Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Computer Methods and Programs in Biomedicine, 120(2), 88–101.CrossRefGoogle Scholar
- 12.Bertoglio, C., Barber, D., Gaddum, N., Valverde, I., Rutten, M., Beerbaum, P., et al. (2014). Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model. Journal of Biomechanics, 47(5), 1027–1034.CrossRefGoogle Scholar
- 13.Sonntag, S. J., Li, W., Becker, M., Kaestner, W., Büsen, M. R., Marx, N., et al. (2014). Combined computational and experimental approach to improve the assessment of mitral regurgitation by echocardiography. Annals of Biomedical Engineering, 42(5), 971–985.CrossRefGoogle Scholar
- 14.Bluestein, D., Einav, S., & Slepian, M. J. (2013). Device thrombogenicity emulation: A novel methodology for optimizing the thromboresistance of cardiovascular devices. Journal of Biomechanics, 46(2), 338–344.CrossRefGoogle Scholar
- 15.Chiu, W.-C., Girdhar, G., Xenos, M., Alemu, Y., Soares, J. S., Einav, S., et al. (2014). Thromboresistance comparison of the HeartMate II ventricular assist device with the device thrombogenicity emulation-optimized HeartAssist 5 VAD. Journal of Biomechanical Engineering, 136(2), 021014.CrossRefGoogle Scholar
- 16.Farag, M. B., Karmonik, C., Rengier, F., Loebe, M., Karck, M., von Tengg-Kobligk, H., et al. (2014). Review of recent results using computational fluid dynamics simulations in patients receiving mechanical assist devices for end-stage heart failure. Methodist DeBakey Cardiovascular Journal, 10(3), 185.CrossRefGoogle Scholar
- 17.Homma, A., Onimaru, R., Matsuura, K., Robbins, K. T., & Fujii, M. (2015). Intra-arterial chemoradiotherapy for head and neck cancer. Japanese Journal of Clinical Oncology, 46(1), 4–12.CrossRefGoogle Scholar
- 18.Martufi, G., & Gasser, T. C. (2013). The role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. Journal of Biomechanical Engineering, 135(2), 021010.CrossRefGoogle Scholar
- 19.Hariharan, P., Giarra, M., Reddy, V., Day, S., Manning, K., Deutsch, S., et al. (2011). Experimental particle image velocimetry protocol and results database for validating computational fluid dynamic simulations of the FDA benchmark nozzle model. Journal of Biomechanical Engineering, 133, 041002.CrossRefGoogle Scholar
- 20.Ohhara, Y., Oshima, M., Iwai, T., Kitajima, H., Yajima, Y., Mitsudo, K., et al. (2016). Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model. Biomedical Engineering Online, 15(1), 16.CrossRefGoogle Scholar
- 21.Pant, S., Bressloff, N. W., Forrester, A. I., & Curzen, N. (2010). The influence of strut-connectors in stented vessels: A comparison of pulsatile flow through five coronary stents. Annals of Biomedical Engineering, 38(5), 1893–1907.CrossRefGoogle Scholar
- 22.Xenos, M., Girdhar, G., Alemu, Y., Jesty, J., Slepian, M., Einav, S., et al. (2010). Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: A study in two bileaflet MHV designs. Journal of Biomechanics, 43(12), 2400–2409.CrossRefGoogle Scholar
- 23.Wu, J., Paden, B. E., Borovetz, H. S., & Antaki, J. F. (2010). Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artificial Organs, 34(5), 402–411.CrossRefGoogle Scholar
- 24.Ansaloni, L., Coccolini, F., Morosi, L., Ballerini, A., Ceresoli, M., Grosso, G., et al. (2015). Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. British Journal of Cancer, 112(2), 306.CrossRefGoogle Scholar
- 25.Au, J. L.-S., Guo, P., Gao, Y., Lu, Z., Wientjes, M. G., Tsai, M., et al. (2014). Multiscale tumor spatiokinetic model for intraperitoneal therapy. The AAPS Journal, 16(3), 424–439.CrossRefGoogle Scholar
- 26.Bhandari, A., Bansal, A., Singh, A., & Sinha, N. (2017). Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. Journal of Biomechanics, 59, 80–89.CrossRefGoogle Scholar
- 27.Barnes, S. L., Whisenant, J. G., Loveless, M. E., & Yankeelov, T. E. (2012). Practical dynamic contrast enhanced MRI in small animal models of cancer: Data acquisition, data analysis, and interpretation. Pharmaceutics, 4(3), 442–478.CrossRefGoogle Scholar
- 28.Bhandari, A., Bansal, A., Jain, R., Singh, A., & Sinha, N. (2019). Effect of tumor volume on drug delivery in heterogeneous vasculature of human brain tumors. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2(2), 021004.CrossRefGoogle Scholar
- 29.Goodman, M. D., McPartland, S., Detelich, D., & Saif, M. W. (2016). Chemotherapy for intraperitoneal use: A review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy. Journal of Gastrointestinal Oncology, 7(1), 45.Google Scholar
- 30.De Vlieghere, E., Carlier, C., Ceelen, W., Bracke, M., & De Wever, O. (2016). Data on in vivo selection of SK-OV-3 Luc ovarian cancer cells and intraperitoneal tumor formation with low inoculation numbers. Data in Brief, 6, 542–549.CrossRefGoogle Scholar
- 31.Gremonprez, F., Descamps, B., Izmer, A., Vanhove, C., Vanhaecke, F., De Wever, O., et al. (2015). Pretreatment with VEGF (R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. Oncotarget, 6(30), 29889.CrossRefGoogle Scholar
- 32.Stachowska-Pietka, J., Waniewski, J., Flessner, M. F., & Lindholm, B. (2012). Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: A spatially distributed approach. American Journal of Physiology-Renal Physiology, 302(10), F1331–F1341.CrossRefGoogle Scholar
- 33.Steuperaert, M., Debbaut, C., Segers, P., & Ceelen, W. (2017). Modelling drug transport during intraperitoneal chemotherapy. Pleura and Peritoneum, 2(2), 73–83.CrossRefGoogle Scholar
- 34.Kim, M., Gillies, R. J., & Rejniak, K. A. (2013). Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Frontiers in Oncology, 3, 278.Google Scholar
- 35.Magdoom, K., Pishko, G. L., Kim, J. H., & Sarntinoranont, M. (2012). Evaluation of a voxelized model based on DCE-MRI for tracer transport in tumor. Journal of Biomechanical Engineering, 134(9), 091004.CrossRefGoogle Scholar
- 36.Steuperaert, M., Falvo D’Urso Labate, G., Debbaut, C., De Wever, O., Vanhove, C., Ceelen, W., et al. (2017). Mathematical modeling of intraperitoneal drug delivery: Simulation of drug distribution in a single tumor nodule. Drug Delivery, 24(1), 491–501.CrossRefGoogle Scholar
- 37.Pishko, G. L., Astary, G. W., Mareci, T. H., & Sarntinoranont, M. (2011). Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Annals of Biomedical Engineering, 39(9), 2360.CrossRefGoogle Scholar
- 38.Stylianopoulos, T. (2017). The solid mechanics of cancer and strategies for improved therapy. Journal of Biomechanical Engineering, 139(2), 021004.CrossRefGoogle Scholar
- 39.Stylianopoulos, T., Martin, J. D., Chauhan, V. P., Jain, S. R., Diop-Frimpong, B., Bardeesy, N., et al. (2012). Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proceedings of the National Academy of Sciences, 109(38), 15101–15108.CrossRefGoogle Scholar
- 40.Barker, P. B., X. Golay, & Zaharchuk, G. (2013). Clinical perfusion MRI: Techniques and applications. Cambridge University Press.Google Scholar
- 41.Winner, K. R. K., Steinkamp, M. P., Lee, R. J., Swat, M., Muller, C. Y., Moses, M. E., et al. (2016). Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Research, 76(6), 1320–1334.CrossRefGoogle Scholar
- 42.Zhang, Y., Furusawa, T., Sia, S. F., Umezu, M., & Qian, Y. (2013). Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation. Computer Methods in Biomechanics and Biomedical Engineering, 16(5), 488–494.CrossRefGoogle Scholar
- 43.Tabakova, S., Nikolova, E., & Radev, S. (2014). Carreau model for oscillatory blood flow in a tube. In AIP Conference Proceedings. AIP.Google Scholar
- 44.Zhan, W., Gedroyc, W., & Xu, X. Y. (2014). Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour. Journal of Physics D: Applied Physics, 47(47), 475401.CrossRefGoogle Scholar
- 45.Sui, B., Gao, P., Lin, Y., Jing, L., Sun, S., & Qin, H. (2015). Hemodynamic parameters distribution of upstream, stenosis center, and downstream sides of plaques in carotid artery with different stenosis: A MRI and CFD study. Acta Radiologica, 56(3), 347–354.CrossRefGoogle Scholar
- 46.Marsden, A. L., Bazilevs, Y., Long, C. C., & Behr, M. (2014). Recent advances in computational methodology for simulation of mechanical circulatory assist devices. Wiley Interdisciplinary Reviews: Systems Biology and Medicine., 6(2), 169–188.Google Scholar
- 47.Wu, J., Liu, G., Huang, W., Ghista, D. N., & Wong, K. K. (2015). Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Computer Methods in Biomechanics and Biomedical Engineering, 18(16), 1835–1845.CrossRefGoogle Scholar
- 48.Khader, A. S., Shenoy, S. B., Pai, R. B., Kamath, G. S., Sharif, N. M., & Rao, V. (2011). Effect of increased severity in patient specific stenosis of common carotid artery using CFD—A case study. World Journal of Modelling and Simulation, 7(2), 113–122.Google Scholar
- 49.Consolo, F., Dimasi, A., Rasponi, M., Valerio, L., Pappalardo, F., Bluestein, D., et al. (2016). Microfluidic approaches for the assessment of blood cell trauma: A focus on thrombotic risk in mechanical circulatory support devices. The International Journal of Artificial Organs, 39(4), 184–193.CrossRefGoogle Scholar