Advertisement

Short Time Frequency Analysis of Theta Activity for the Diagnosis of Bruxism on EEG Sleep Record

  • Md Belal Bin Heyat
  • Dakun LaiEmail author
  • Faijan Akhtar
  • Mohd Ammar Bin Hayat
  • Shajan Azad
Chapter
  • 286 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 875)

Abstract

Sleep is the important part of the living organism. If the normal humans do not sleep properly so its generate many diseases. Bruxism is a neurological or sleep syndrome. Its individuals involuntarily grind the teeth. Bruxism covered in 8–31% of the whole sleep disorders like Insomnia, Narcolepsy etc. The present research focused on three steps such as data selection, filtration, and normalized value of theta activity. Additionally, the three sleep stages of non rapid eye movement such as S0, S1, S2 and rapid eye movement. In addition to parietal occipital (P4-O2) Electroencephalogram (EEG), channels are used in the present work. The total number of eighteen subjects such as bruxism and healthy human studied to this work. The average value of the normal human’s theta activity is higher than bruxism in all sleep stages such as S0, S1, S2 and rapid eye movement. Moreover, the proposed research is in accurate than other traditional system.

Keywords

Bruxism Brain EEG signal Parietal occipital channel Detection Teeth Sleep disorder 

Notes

Acknowledgements

The authors would like to thanks Dr. Faez Iqbal Khan, Prof. Naseem, Prof. Siddiqui, and Prof. Quddus for useful discussion. It’s also acknowledge BMI-EP, Laboratory, UESTC, Chengdu, Sichuan, China for providing biomedical and computational equipment. The National Natural Science Foundation of China under grant 61771100 supported this work.

References

  1. 1.
    Tsuno, N., Besset, A., & Ritchie, K. (2005). Sleep and depression. The Journal of Clinical Psychiatry.Google Scholar
  2. 2.
    Hasan, Y. M., Heyat, M. B. B., Siddiqui, M. M., Azad, S., & Akhtar, F. (2015). An overview of sleep and stages of sleep. International Journal of Advanced Research in Computer and Communication Engineering, 4(12), 505–507.Google Scholar
  3. 3.
    Khoramirad, A., et al. (2015). Relationship between sleep quality and spiritual well-being/religious activities in Muslim women with breast cancer. Journal of Religion and Health, 54(6), 2276–2285.CrossRefGoogle Scholar
  4. 4.
    BaHammam, A. S. (2011). Sleep from an Islamic perspective. Annals of Thoracic Medicine, 6(4), 187.CrossRefGoogle Scholar
  5. 5.
    Pohlman, R., & Cichos, M. (1974, July 16). Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe. U.S. Patent No. 3,823,717.Google Scholar
  6. 6.
    Zhang, R., et al. (2016). Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. Journal of the American Chemical Society, 138(11), 3769–3778.CrossRefGoogle Scholar
  7. 7.
    Capellini, I., et al. (2008). Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Functional Ecology, 22(5), 847–853.CrossRefGoogle Scholar
  8. 8.
    Opp, M. R. (2009). Sleeping to fuel the immune system: Mammalian sleep and resistance to parasites. BMC Evolutionary Biology, 9(1), 8.CrossRefGoogle Scholar
  9. 9.
    Samson, D. R., & Nunn, C. L. (2015). Sleep intensity and the evolution of human cognition. Evolutionary Anthropology: Issues, News, and Reviews, 24(6), 225–237.CrossRefGoogle Scholar
  10. 10.
    Lee-Chiong, T. (2008). Sleep medicine: Essentials and review. Oxford University Press.Google Scholar
  11. 11.
    Imtiaz, S. A. (2015). Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems.Google Scholar
  12. 12.
    Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: Public Health Service, U.S. Government Printing Office.Google Scholar
  13. 13.
    Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. Westchester, IL: American Academy of Sleep Medicine.Google Scholar
  14. 14.
    Gaudreau, H., Carrier, J., & Montplaisir, J. (2001). Age-related modifications of NREM sleep EEG: From childhood to middle age. Journal of Sleep Research, 10(3), 165–172.CrossRefGoogle Scholar
  15. 15.
    Marzano, C., et al. (2010). The effects of sleep deprivation in humans: Topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. Journal of Sleep Research, 19(2), 260–268.CrossRefGoogle Scholar
  16. 16.
    Holz, J., et al. (2012). EEG sigma and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation. Journal of Sleep Research, 21(6), 612–619.CrossRefGoogle Scholar
  17. 17.
    Nofzinger, E. A., et al. (2002). Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain, 125(5), 1105–1115.CrossRefGoogle Scholar
  18. 18.
    Thirumalai, S. S., Shubin, R. A., & Robinson, R. (2002). Rapid eye movement sleep behavior disorder in children with autism. Journal of Child Neurology, 17(3), 173–178.CrossRefGoogle Scholar
  19. 19.
    Dang-Vu, T. T., et al. (2011). Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proceedings of the National Academy of Sciences, 108(37), 15438–15443.CrossRefGoogle Scholar
  20. 20.
    Lakshminarayana Tadimeti, M. D., et al. (2000). Sleep latency and duration estimates among sleep disorder patients: Variability as a function of sleep disorder diagnosis, sleep history, and psychological characteristics. Sleep, 23(1), 1.Google Scholar
  21. 21.
    Van der Heijden, K. B., Smits, M. G., Someren, E. J. V., & Boudewijn Gunning, W. (2005). Idiopathic chronic sleep onset insomnia in attention-deficit/hyperactivity disorder: A circadian rhythm sleep disorder. Chronobiology International, 22(3), 559–570.CrossRefGoogle Scholar
  22. 22.
    Senthilvel, E., Auckley, D., & Dasarathy, J. (2011). Evaluation of sleep disorders in the primary care setting: History taking compared to questionnaires. Journal of Clinical Sleep Medicine, 7(1), 41–48.Google Scholar
  23. 23.
    Sateia, M. J. (2014). International classification of sleep disorders. Chest, 146(5), 1387–1394.CrossRefGoogle Scholar
  24. 24.
    Thorpy, M. J. (2012). Classification of sleep disorders. Neurotherapeutics, 9(4), 687–701.CrossRefGoogle Scholar
  25. 25.
    Ohayon, M. M., & Reynolds, C. F., III. (2009). Epidemiological and clinical relevance of insomnia diagnosis algorithms according to the DSM-IV and the International Classification of Sleep Disorders (ICSD). Sleep Medicine, 10(9), 952–960.CrossRefGoogle Scholar
  26. 26.
    Heyat, M. B. B. (2016). Insomnia: Medical sleep disorder & diagnosis (Tech. Rep. V337729). Hamburg, Germany: Anchor Academic Publishing.Google Scholar
  27. 27.
    Heyat, M. B. B. (2017). Hamming window is used in the detection of insomnia medical sleep syndrome. In Proceedings of International Seminar on Present Scenario & Future Prospectives of Research in Engineering and Sciences (ISPSFPRES) (pp. 65–71).Google Scholar
  28. 28.
    Heyat, M. B. B., Akhtar, S. F., & Azad, S. (2016, July). Power spectral density are used in the investigation of insomnia neurological disorder. In Proceedings of Pre Congress Symposium, Organized Indian Academy of Social Sciences (ISSA) (pp. 45–50).Google Scholar
  29. 29.
    Heyat, B., Akhtar, F., Mehdi, A., Azad, S., Hayat, A. B., & Azad, S. (2017). Normalized power are used in the diagnosis of insomnia medical sleep syndrome through EMG1-EMG2 channel. Austin Journal of Sleep Disorders, 4(1), 1027.Google Scholar
  30. 30.
    Heyat, M. B. B., & Siddiqui, S. A. (2015). An overview of Dalk therapy and treatment of insomnia by Dalk therapy (Tech. Rep. 2). Lucknow, India: State Takmeel-ut-Tib-College and Hospital.Google Scholar
  31. 31.
    Siddiqui, M. M., Srivastava, G., & Saeed, S. H. (2016). Diagnosis of insomnia sleep disorder using short time frequency analysis of PSD approach applied on EEG signal using channel ROC-LOC. Sleep Science, 9(3), 186–191.CrossRefGoogle Scholar
  32. 32.
    Peyron, C., Faraco, J., Rogers, W., Ripley, B., Overeem, S., Charnay, Y., et al. (2000). A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Medicine, 6(9), 991.CrossRefGoogle Scholar
  33. 33.
    Thorpy, M. J., Shapiro, C., Mayer, G., Corser, B. C., Emsellem, H., Plazzi, G., et al. (2019). A randomized study of solriamfetol for excessive sleepiness in narcolepsy. Annals of Neurology, 85(3), 359–370.CrossRefGoogle Scholar
  34. 34.
    Guilleminault, C., & Pelayo, R. (2000). Narcolepsy in children. Pediatric Drugs, 2(1), 1–9.CrossRefGoogle Scholar
  35. 35.
    Rahman, T., Farook, O., Heyat, B. B., & Siddiqui, M. M. (2016). An overview of narcolepsy. International Advanced Research Journal in Science, Engineering and Technology, 3(3), 85–87.Google Scholar
  36. 36.
    Veasey, S. C., Yeou-Jey, H., Thayer, P., & Fenik, P. (2004). Murine Multiple Sleep Latency Test: Phenotyping sleep propensity in mice. Sleep, 27(3), 388–393.CrossRefGoogle Scholar
  37. 37.
    Manni, R., Terzaghi, M., & Repetto, A. (2008). The FLEP scale in diagnosing nocturnal frontal lobe epilepsy, NREM and REM parasomnias: Data from a tertiary sleep and epilepsy unit. Epilepsia, 49(9), 1581–1585.CrossRefGoogle Scholar
  38. 38.
    Derry, C. P., Heron, S. E., Phillips, F., Howell, S., MacMahon, J., Phillips, H. A., et al. (2008). Severe autosomal dominant nocturnal frontal lobe epilepsy associated with psychiatric disorders and intellectual disability. Epilepsia, 49(12), 2125–2129.CrossRefGoogle Scholar
  39. 39.
    Farooq, O., Rahman, T., Heyat, M. B. B., Siddiqui, M. M., & Akhtar, F. (2016). An overview of NFLE. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 4, 209–211.Google Scholar
  40. 40.
    Bixler, E. O., Vgontzas, A. N., Lin, H. M., Calhoun, S. L., Vela-Bueno, A., & Kales, A. (2005). Excessive daytime sleepiness in a general population sample: The role of sleep apnea, age, obesity, diabetes, and depression. The Journal of Clinical Endocrinology & Metabolism, 90(8), 4510–4515.CrossRefGoogle Scholar
  41. 41.
    Dempsey, J. A., Veasey, S. C., Morgan, B. J., & O’Donnell, C. P. (2010). Pathophysiology of sleep apnea. Physiological Reviews, 90(1), 47–112.CrossRefGoogle Scholar
  42. 42.
    Cai, A., Wang, L., & Zhou, Y. (2016). Hypertension and obstructive sleep apnea. Hypertension Research, 39(6), 391.CrossRefGoogle Scholar
  43. 43.
    Elshaug, A. G., Moss, J. R., Southcott, A. M., & Hiller, J. E. (2007). Redefining success in airway surgery for obstructive sleep apnea: A meta analysis and synthesis of the evidence. Sleep, 30(4), 461–467.CrossRefGoogle Scholar
  44. 44.
    Cowie, M. R., Woehrle, H., Wegscheider, K., Angermann, C., d’Ortho, M. P., Erdmann, E., et al. (2015). Adaptive servo-ventilation for central sleep apnea in systolic heart failure. New England Journal of Medicine, 373(12), 1095–1105.CrossRefGoogle Scholar
  45. 45.
    Aurora, R. N., Chowdhuri, S., Ramar, K., Bista, S. R., Casey, K. R., Lamm, C. I., et al. (2012). The treatment of central sleep apnea syndromes in adults: Practice parameters with an evidence-based literature review and meta-analyses. Sleep, 35(1), 17–40.CrossRefGoogle Scholar
  46. 46.
    Javaheri, S., Smith, J., & Chung, E. (2009). The prevalence and natural history of complex sleep apnea. Journal of Clinical Sleep Medicine, 5(03), 205–211.Google Scholar
  47. 47.
    McEvoy, R. D., Antic, N. A., Heeley, E., Luo, Y., Ou, Q., Zhang, X., et al. (2016). CPAP for prevention of cardiovascular events in obstructive sleep apnea. New England Journal of Medicine, 375(10), 919–931.CrossRefGoogle Scholar
  48. 48.
    Chirinos, J. A., Gurubhagavatula, I., Teff, K., Rader, D. J., Wadden, T. A., Townsend, R., et al. (2014). CPAP, weight loss, or both for obstructive sleep apnea. New England Journal of Medicine, 370(24), 2265–2275.CrossRefGoogle Scholar
  49. 49.
    Sanei, S., & Chambers, J. A. (2007). EEG signal processing.Google Scholar
  50. 50.
    Subha, D. P., Joseph, P. K., Acharya, R., & Lim, C. M. (2010). EEG signal analysis: A survey. Journal of Medical Systems, 34(2), 195–212.CrossRefGoogle Scholar
  51. 51.
    Lakshmi, M. R., Prasad, T. V., & Prakash, D. V. C. (2014). Survey on EEG signal processing methods. International Journal of Advanced Research in Computer Science and Software Engineering, 4(1).Google Scholar
  52. 52.
    Heyat, M. B. B., Shaguftah, Hasan, Y. M., & Siddiqui, M. M. (2015). EEG signals and wireless transfer of EEG signals. International Journal of Advanced Research in Computer and Communication Engineering, 4(12), 502–504.Google Scholar
  53. 53.
    Heyat, M. B. B., & Siddiqui, M. M. (2015). Recording of EEG, ECG, EMG signal. International Journal of Advanced Research in Computer Science and Software Engineering, 5(10), 813–815.Google Scholar
  54. 54.
    Rappelsberger, P., Pockberger, H., & Petsche, H. (1982). The contribution of the cortical layers to the generation of the EEG: Field potential and current source density analyses in the rabbit’s visual cortex. Electroencephalography and Clinical Neurophysiology, 53(3), 254–269.CrossRefGoogle Scholar
  55. 55.
    Van Luijtelaar, G., Hramov, A., Sitnikova, E., & Koronovskii, A. (2011). Spike–wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus. Clinical Neurophysiology, 122(4), 687–695.CrossRefGoogle Scholar
  56. 56.
    Berk, L., Alphonso, C., Thakker, N., & Nelson, B. (2014). Humor similar to meditation enhances EEG power spectral density of gamma wave band activity (31–40 Hz) and synchrony (684.5). The FASEB Journal, 28(1_supplement), 684–685.Google Scholar
  57. 57.
    Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.CrossRefGoogle Scholar
  58. 58.
    Terzano, M. G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault, C., et al. (2001). Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Medicine, 2(6), 537–553.CrossRefGoogle Scholar
  59. 59.
    Heyat, M. B. B., Lai, D., & Zhang, F. I. K. Y. (2019). Sleep bruxism detection using decision tree method by the combination of C4-P4 and C4-A1 channels of scalp EEG. IEEE Access.Google Scholar
  60. 60.
    Lai, D., et al. (2019). Prognosis of sleep bruxism using power spectral density approach applied on EEG signal of both EMG1-EMG2 and ECG1-ECG2 channels. IEEE Access, 7, 82553–82562.CrossRefGoogle Scholar
  61. 61.
    Villwock, S., & Pacas, M. (2008). Application of the Welch-method for the identification of two- and three-mass-systems. IEEE Transactions on Industrial Electronics, 55(1), 457–466.CrossRefGoogle Scholar
  62. 62.
    Rahi, P. K., & Mehra, R. (2014). Analysis of power spectrum estimation using welch method for various window techniques. International Journal of Emerging Technologies and Engineering, 2(6), 106–109.Google Scholar
  63. 63.
    Barbe, K., Pintelon, R., & Schoukens, J. (2009). Welch method revisited: Nonparametric power spectrum estimation via circular overlap. IEEE Transactions on Signal Processing, 58(2), 553–565.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Kumar, S., Singh, K., & Saxena, R. (2011). Analysis of Dirichlet and generalized “Hamming” window functions in the fractional Fourier transform domains. Signal Processing, 91(3), 600–606.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Md Belal Bin Heyat
    • 1
  • Dakun Lai
    • 1
    Email author
  • Faijan Akhtar
    • 2
  • Mohd Ammar Bin Hayat
    • 3
  • Shajan Azad
    • 3
    • 4
  1. 1.Biomedical Imaging and Electrophysiology LaboratoryUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.LucknowIndia
  4. 4.Hayat Institute of NursingLucknowIndia

Personalised recommendations