Skip to main content

Abstract

For a long time, design of new materials was implemented on the basis of costly and time-consuming experimental approach. Nowadays machine learning, data mining and Big Data techniques allow to develop a new approach, a so-called data-driven design of new materials. In this paper, we consider an approach to alloy discovery that is based on a synergy of deep learning and fuzzy logic methods. The approach allows to design materials with predefined characteristics by computer-aided generation of the underlying crystal structures and optimization of their parameters. An example is provided to illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babanli, M.B., Huseynov, V.M.: Z-number-based alloy selection problem. Procedia Comput. Sci. 102, 183–189 (2016)

    Article  Google Scholar 

  2. Babanli, M.B., et al.: Review on the new materials design methods. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Sadikoglu, F. (eds.) 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing—ICAFS-2018. Advances in Intelligent Systems and Computing, vol. 896. Springer, Cham (2018)

    Google Scholar 

  3. Babanli, M.B.: Synthesis of new materials by using fuzzy and big data concepts. Procedia Comput Sci 120, 104–111 (2017)

    Article  Google Scholar 

  4. Babanli, M.B.: Theory and practice of material development under imperfect information. In: Advances in Intelligent Systems and Computing, vol. 896, pp. 4–14. Springer (2018)

    Google Scholar 

  5. Babanli, M.B.: Fuzzy modeling of phase diagram under imprecise thermodynamic data. In: Proceedings of the Tenth World Conference “Intelligent Systems for Industrial Automation”, pp. 265–266. b-Quadrat Verlag (2018)

    Google Scholar 

  6. Babanli, M.B.: Fuzzy Logic-Based Material Selection and Synthesis. World Scientific, Singapore (2019)

    Book  Google Scholar 

  7. Babanli, M.B.: Fuzzy logic and fuzzy expert system-based material synthesis methods (2019). IntechOpen, https://doi.org/10.5772/intechopen.84493. Available from: https://www.intechopen.com/online-first/fuzzy-logic-and-fuzzy-expert-system-based-material-synthesis-methods

    MATH  Google Scholar 

  8. Constable, D.J.C.: The practice of chemistry still needs to change. Curr. Opin. Green Sustain. Chem. 7, 60–62 (2017)

    Article  Google Scholar 

  9. Yan, W., Lin, S., Kafka, O.L., et al.: Modeling process-structure-property relationships for additive manufacturing. Front. Mech. Eng. 13, 482 (2018)

    Article  Google Scholar 

  10. Jung, J., Yoon, J.I., Park, H.K., Kim, J.Y., Kim, H.S.: An efficient machine learning approach to establish structure-property linkages. Comput. Mater. Sci. 156, 17–25 (2019)

    Article  Google Scholar 

  11. Su, C., Lv, J., Li, Q., Wang, H., Zhang, L., Wang, Y., Ma, Y.: Construction of crystal structure prototype database: methods and applications. J. Phys.: Condens. Matter 29(16), 165901 (2017)

    Google Scholar 

  12. Latypov, M.I., Kalidindi, S.R.: Data-driven reduced order models for effective yield strength and partitioning of strain in multiphase steels. J. Comput. Phys. 346, 242–261 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yabansu, Y.C., Steinmetz, P., Hötzer, J., Kalidindi, S.R., Nestler, B.: Extraction of reduced-order process-structure linkages from phase-field simulations. Acta Mater. 124, 182–194 (2017)

    Article  Google Scholar 

  14. Paulson, N.H., Priddy, M.W., McDowell, D.L., Kalidindi, S.R.: Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics. Acta Mater. 129, 428–438 (2017)

    Article  Google Scholar 

  15. Khosravani, A., Cecen, A., Kalidindi, S.R.: Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater. 123, 55–69 (2017)

    Article  Google Scholar 

  16. Iskakov, A., Yabansu, Y.C., Rajagopalan, S., Kapustina, A., Kalidindi, S.R.: Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components. Acta Mater. 144, 758–767 (2017)

    Article  Google Scholar 

  17. Yabansu, Y.C., Patel, D.K., Kalidindi, S.R.: Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater. 81, 151–160 (2014)

    Article  Google Scholar 

  18. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C.: Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017)

    Article  Google Scholar 

  19. Seko, A., Togo, A., Tanaka, I.: Descriptors for machine learning of materials data. In: Tanaka, I. (ed.) Nanoinformatics. Springer, Singapore (2018)

    Google Scholar 

  20. Kim, E., Huang, K., Saunders, A., McCallum, A., Ceder, G., Olivetti, E.: Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29(21), 9436–9444 (2017)

    Article  Google Scholar 

  21. Kim, E., Huang, K., Jegelka, S., Olivetti, E.: Virtual screening of inorganic materials synthesis parameters with deep learning. npj Comput. Mater. 3, Article no. 53 (2017)

    Google Scholar 

  22. Gubaev, K., Podryabinkin, E.V., Hart, G.L., Shapeev, A.V.: Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019)

    Article  Google Scholar 

  23. Han, Y., Yang, X., Zeng, W., Lu, W.: Nonlinear relationship between processing parameters and mechanical properties in Ti6Al4V alloy by using fuzzy neural network. In: Venkatesh, V., Pilchak, A.L., Allison, J.E., Ankem, S., Boyer, R., Christodoulou, J., Fraser, H.L., Imam, M.A., Kosaka, Y., Rack, H.J., Chatterjee, A., Woodfield, A. (eds.) Proceedings of the 13th World Conference on Titanium (2016)

    Google Scholar 

  24. Marwin, H.S.S., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018)

    Article  Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  26. Yann, L., Yoshua, B., Geoffrey, H.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  27. Prokoshkin, S.D., Khmelevskaya, I.Yu., Korotitskij, A.V., Trubitsyna, I.B., Brailovskij, V., Tyurenn, S.: On the lattice parameters of the B19’ martensite in binary Ti-Ni shape memory alloys. Fiz. Met. Metalloved. 96(1), 62–71 (2003)

    Google Scholar 

  28. Aliev, R.A., Perdycz, W., Huseynov, O.H.: Functions defined on a set of Z-numbers. Inf. Sci. 423, 353–375 (2018)

    Article  MathSciNet  Google Scholar 

  29. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H., Jabbarova, K.I.: Z-number-based linear programming. Int. J. Intell. Syst. 30(5), 563–589 (2015)

    Article  Google Scholar 

  30. Aliev, R.A., Pedrycz, W.: Fundamentals of a fuzzy-logic-based generalized theory of stability. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(4), 971–988 (2009)

    Article  Google Scholar 

  31. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of continuous Z-numbers. Inf. Sci. 373, 441–460 (2016)

    Article  Google Scholar 

  32. Aliev, R., Tserkovny, A.: Systemic approach to fuzzy logic formalization for approximate reasoning. Inf. Sci. 181(6), 1045–1059 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Babanli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babanli, M.B. (2020). Artificial Intelligence-Based New Material Design. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F. (eds) 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019. ICSCCW 2019. Advances in Intelligent Systems and Computing, vol 1095. Springer, Cham. https://doi.org/10.1007/978-3-030-35249-3_2

Download citation

Publish with us

Policies and ethics