Skip to main content

Abstract

The incorporation of nanomaterials into medical devices has benefits and also new challenges for safety assessment. Understanding these challenges is a significant and important step in the process of practicing “safety by design” in the development of nano-enabled medical devices as well as for establishing methods and practices for safety testing. Toxicological issues are being identified and resolved for a growing number of emerging nano-enabled medical devices with product safety as the objective. This safety testing has identified challenges in test design, nomenclature, and global regulatory processes and harmonization. Nevertheless, it is clear that the incorporation of nanotechnology into medical device design most certainly is having and will continue to have major impacts toward advancing both our knowledge of the utility of nanotechnology in medicine and toward improving the quality of life of those with a variety of afflictions that need hope for a brighter future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed, M., Siddiqui, M. A., Akhtar, M. J., Ahmad, I., Pant, A. B., & Alhadlaq, H. A. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communication, 396(2), 578–583.

    Article  CAS  Google Scholar 

  • Alexander, G. C., Hwang, P. T., Chen, J., Kim, J., Brott, B. C., Yoon, Y.-S., & Jun, H.-W. (2017). Nanomatrix coated stent enhances endothelialization but reduces platelet, smooth muscle cell, and monocyte adhesion under physiologic conditions. ACS Biomaterials Science & Engineering, 4, 107–115.

    Article  CAS  Google Scholar 

  • Aninwene, G. E., II, & Webster, T. J. (2013). Nanostructured and nanoparticulate metals: Redefining the field of medical devices. Journal of Powder Metallurgy and Mining, 2, 1–3.

    Google Scholar 

  • Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(4), 1461–1468.

    Article  CAS  Google Scholar 

  • ASTM International. (2014). ASTM F1904–14 “Standard Practice for Testing the Biological Responses to Particles in vivo.” ASTM International, West Conshohocken, PA, 2014, www.astm.org

  • ASTM International. (2018). ASTM F1903-18. “Standard Practice for Testing for Biological Responses to Particles In Vitro.” ASTM International, West Conshohocken, PA, 2018, www.astm.org

  • Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634e641.

    Article  CAS  Google Scholar 

  • Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2016). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20(1), 1–11.

    PubMed  PubMed Central  Google Scholar 

  • Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A., & Dekker, C. (2003). Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters, 3, 727–730.

    Article  CAS  Google Scholar 

  • Bharti, C., Nagaich, U., Pal, A. K., & Gulati, N. (2015). Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5(3), 124–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borhani, S., Hassanajili, S., Tafti, S. H. A., & Rabbani, S. (2018). Cardiovascular stents: Overview, evolution, and next generation. Progress in Biomaterials, 7, 175–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boverhof, D. R., & David, R. M. (2010). Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Analytical and Bioanalytical Chemistry, 396(3), 953–961.

    Article  CAS  PubMed  Google Scholar 

  • Boverhof, D. R., Bramante, C. M., Butala, J. H., Clancy, S. F., Lafranconi, M., West, J., & Gordon, S. C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol, 73(1), 137–150.

    Article  CAS  PubMed  Google Scholar 

  • Casals, E., Pfaller, T., et al. (2011). Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe(3) O(4), CoO and CeO(2)) nanoparticles. Small, 7(24), 3479–3486.

    Article  CAS  PubMed  Google Scholar 

  • Cedervall, T., Lynch, I., et al. (2007). Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences, 104(7), 2050–2055.

    Article  CAS  Google Scholar 

  • Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B., & Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Weng, S., Zhang, F., et al. (2012). Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano, 7(1), 566–575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, W., Habraken, T. C., Hennink, W. E., & Kok, R. J. (2015). Polymer-free drug-eluting stents: An overview of coating strategies and comparison with polymer-coated drug-eluting stents. Bioconjugate Chemistry, 26, 1277–1288.

    Article  CAS  PubMed  Google Scholar 

  • Chu, H., Jang, H., Lee, Y., Chae, Y., & Ahn, J. H. (2016). Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy, 27, 298–305.

    Article  CAS  Google Scholar 

  • Dobrovolskaia, M. A., Shurin, M., & Shvedova, A. A. (2016). Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 299, 78–89.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, K., & Poland, C. A. (2013). Nanotoxicity: Challenging the myth of nanospecific toxicity. Current Opinion in Biotechnology, 24, 724e734.

    Article  CAS  Google Scholar 

  • European Union. (1990). Council Directive on the approximation of the laws of the Member States relating to active implantable medical devices (90/385/EEC). 20 June 1990, pp. 1–17.

    Google Scholar 

  • European Union. (1993). Council Directive 93/42/EEC concerning medical devices. 14 June 1993, pp. 1–60.

    Google Scholar 

  • European Union. (1998). Directive 98/79/EC of the European Parliament and of the Council of on in vitro diagnostic medical devices. 27 October 1998, pp. 1–30.

    Google Scholar 

  • European Union. (2017). European Parliament. Regulation EU 2017/745 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No. 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC. 5 April 2017, pp. 1–200

    Google Scholar 

  • Faunce, T. A., White, J., et al. (2008). Integrated research into the nanoparticle-protein corona: A new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine (London, England), 3(6), 859–866.

    Article  CAS  Google Scholar 

  • Fong, J., & Wood, F. (2006). Nanocrystalline silver dressings in wound management: A review. International Journal of Nanomedicine, 1(4), 441–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas, R. (1999). Nanomedicine [Internet]. [cited 2019 Feb 18]. Available from: http://www.foresight.org/Nanomedicine

  • Frohlich, E., & Roblegg, E. (2012). Models for oral uptake of nanoparticles in consumer products. Toxicology, 291(1–3), 10–17.

    Article  PubMed  CAS  Google Scholar 

  • Garnett, M. C., & Kallinteri, P. (2006). Nanomedicines and nantoxicology: Some physiological principles. Occupational Medicine (London), 56(5), 307–311.

    Article  CAS  Google Scholar 

  • Ge, C., Du, J., et al. (2011). Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 108(41), 16968–16973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagens, W. I., Oomen, A. G., de Jong, W. H., Casse, F. R., & Sips, A. J. (2007). What do we need to know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 49(3), 217–229.

    Article  CAS  PubMed  Google Scholar 

  • Hamburg, M. A. (2012). FDA’s approach to regulation of products of nanotechnology. Science, 336, 299e300.

    Google Scholar 

  • Hemshekhar, M., Thushara, R. M., Chandranayaka, S., Sherman, L. S., Kemparaju, K., & Girish, K. S. (2016). Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 86, 917–928.

    Article  CAS  PubMed  Google Scholar 

  • Hobson, D. W. (2009). Commercialization of nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(2), 189–202.

    PubMed  Google Scholar 

  • Hobson, D. W. (2016). The commercialization of medical nanotechnology for medical applications. pp. 405–449. In A. Prokop & V. Weissig (Eds.), Intracellular delivery III. Fundamental biomedical technologies. Springer International Publishing Switzerland, 2006.

    Google Scholar 

  • Hobson, D. W., Roberts, S. M., Shvedova, A. A., Warheit, D. B., Hinkley, G. K., & Guy, R. C. (2016). Applied nanotoxicology. International Journal of Toxicology, 35(1), 5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdren, J. P., Sustain, C. R., & Siddiqui, I. A. (2011, June 9). Policy principles for the U.S. decision-making concerning regulation and oversight of applications of nanotechnology and nanomaterials. Memorandum for the heads of executive departments and agencies. https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/foragencies/nanotechnology-regulation-and-oversight-principles.pdf. Accessed: 9 May 2018.

  • Hu, T., et al. (2015). Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: Recent progress and future prospects. ACS Applied Materials & Interfaces, 7, 11695–11712.

    Article  CAS  Google Scholar 

  • Hu, L.-X., Hu, S.-F., Rao, M., Yang, J., Lei, H., Duan, Z., Xia, W., & Zhu, C. (2018). Studies of acute and subchronic systemic toxicity associated with a copper/low-density polyethylene nanocomposite intrauterine device. International Journal of Nanomedicine, 13, 4913–4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igami, M., & Okazaki, T.. (2007) Capturing nanotechnology’s current state of development via 7 analysis of patents. OECD Science, Technology and Industry Working Papers; 2007.

    Google Scholar 

  • International Journal of Nanotechnology and Allied Sciences. (2018). Instructions for authors. http://psmpublishers.org/journal/international-journal-of-nanotechnology-and-allied-sciences. Accessed 31 Dec 2018.

  • International Organization for Standardization. (2018). ISO 10993-1: Biological evaluation of medical devices – Parts 1 through 12: Evaluation and testing within a risk management process. 2018, 41pp.

    Google Scholar 

  • ISO, International Organization for Standardization. (2008). Technical specification: Nanotechnologies terminology and definitions for nano-objects, nanoparticle, nanofibre and nanoplate. ISO/TS 80004-2.

    Google Scholar 

  • ISO, International Organization for Standardization. (2010). Nanotechnologies vocabulary part 1: Core terms. ISO/TS 80004-1.

    Google Scholar 

  • ISO/TR 10993-22: 2 Biological evaluation of medical devices – Part 22: Guidance on nanomaterials. 2017, 61pp.

    Google Scholar 

  • Jachak, A., et al. (2012). Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology, 6(6), 614–622.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X., Weise, S., et al. (2010). Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. Journal of the Royal Society Interface, 7(Suppl. 1), S5–S13.

    CAS  Google Scholar 

  • JSA – JIS T 14971. (2012). Medical devices – Application of risk management to medical devices. 1 March 2012, 94pp.

    Google Scholar 

  • Kim, J., Lee, M. S., Jeon, S., Kim, M., Kim, S., Kim, K., Bien, F., Hong, S. Y., & Park, J. U. (2015). Highly transparent and stretchable field-effect transistor sensors using graphene–nanowire hybrid nanostructures. Advanced Materials, 27, 3292–3297.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, A., Singla, R., Guliani, A., & Yadav, S. K. (2014). Nanoencapsulation for drug delivery. EXCLI Journal, 13, 265–286.

    PubMed  PubMed Central  Google Scholar 

  • Kunzmann, A., et al. (2011). Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta, 1810(3), 361–373.

    Article  CAS  PubMed  Google Scholar 

  • Lai, X., Blazer-Yost, B. L., et al. (2013). Protein expression profiles of intestinal epithelial co-cultures after low level exposure to functionalized carbon nanotubes. International Journal of Biomedical Nanoscience and Nanotechnology, 3(1–2), 1–36.

    Google Scholar 

  • Lee, M. S., Lee, K., Kim, S. Y., Lee, H., Park, J., Choi, K. H., Kim, H. K., Kim, D. G., Lee, D. Y., Nam, S., & Park, J. U. (2013). High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Letters, 13, 2814–2821.

    Article  CAS  PubMed  Google Scholar 

  • Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Yuan, Y., & Liao, M. (2008). Integrated metabolomic analysis of the nanosized copper particle-induced hepatotoxicity and nephro-toxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232(2), 292–301.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhang, K., Wu, F., He, Z., Yang, P., & Huang, N. (2015a). Constructing bio-functional layers of hyaluronan and type IV collagen on titanium surface for improving endothelialization. Journal of Materials Science, 50, 3226–3236.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, K., Wu, J., Zhang, L., Yang, P., Tu, Q., & Huang, N. (2015b). Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility. Colloids and Surfaces, B: Biointerfaces, 128, 201–210.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wu, F., Zhang, K., He, Z., Zou, D., Luo, X., Fan, Y., Yang, P., Zhao, A., & Huang, N. (2017). Controlling molecular weight of hyaluronic acid conjugated on amine-rich surface: Toward better multifunctional biomaterials for cardiovascular implants. ACS Applied Materials & Interfaces, 9, 30343–30358.

    Article  CAS  Google Scholar 

  • Limaye, V., Fortwengel, G., & Limaye, D. (2014). Regulatory roadmap for nanotechnology based medicines: Review. International Journal of Drug Regulatory Affairs, 2(4), 33–41.

    Article  Google Scholar 

  • Liu, T., Zeng, Z., Liu, Y., Wang, J., Maitz, M. F., Wang, Y., Liu, S., Chen, J., & Huang, N. (2014). Surface modification with dopamine and heparin/poly-l-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions. ACS Applied Materials & Interfaces, 6, 8729–8743.

    Article  CAS  Google Scholar 

  • Lundqvist, M., Stigler, J., et al. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265–14270.

    Article  CAS  Google Scholar 

  • Lynch, I., Cedervall, T., et al. (2007). The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 134–135, 167–174.

    Article  PubMed  CAS  Google Scholar 

  • McGill, S. L., & Smyth, H. D. (2010). Disruption of the mucus barrier by topically applied exogenous particles. Molecular Pharmaceutics, 7(6), 2280–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinty, S., McKee, S., McCormick, C., & Wheel, M. (2014). Release mechanism and parameter estimation in drug-eluting stent systems: Analytical solutions of drug release and tissue transport. Mathematical Medicine and Biology, 32(2), 163–186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., Zhang, C., & Zhao, Y. (2007). Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nanocopper particles. Toxicology Letters, 175(1–3), 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Monopoli, M. P., Walczyk, D., et al. (2011). Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133(8), 2525–2534.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere, N. A., & Tran, C. L. (Eds.). (2016). Nanotoxicology: Progress toward nanomedicine (2nd ed... 514pp). Boca Raton: CRC Press.

    Google Scholar 

  • Morie, A., Garg, T., Goyal, A. K., & Rath, G. (2016). Nanofibers as novel drug carrier—An overview. Artificial Cells, Nanomedicine, and Biotechnology, 44, 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Naik, K., Srivastava, P., Deshmukh, K., Monsoor, M. S., & Kowshik, M. (2015). Nanomaterial-based approaches for prevention of biofilm-associated infections on medical devices and implants. Journal of Nanoscience and Nanotechnology, 15(12), 10108–10119.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa, G., Finn, A. V., Ladich, E., Ribichini, F., Coleman, L., Kolodgie, F. D., & Virmani, R. (2008). Drug-eluting stent safety: Findings from preclinical studies. Expert Review of Cardiovascular Therapy, 6, 1379–1391.

    Article  PubMed  Google Scholar 

  • National Nanotechnology Initiative. (2018a). What is nanotechnology? https://www.nano.gov/nanotech-101/what/definition. Accessed 31 December 2018.

  • National Nanotechnology Initiative. (2018b). Standards for nanotechnology. https://www.nano.gov/you/standards. Accessed 31 December 2018.

  • Nature Nanotechnology. (2018). Instructions to authors. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.5261&rep=rep1&type=pdf. Accessed 31 2018.

  • Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5, 081–089.

    Article  CAS  Google Scholar 

  • Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Perspectives Environmental Health, 113(7), 823–839.

    Article  CAS  Google Scholar 

  • Obiweluozor, F. O., Emechebe, G. A., Tiwari, A. P., Kim, J. Y., Park, C. H., & Kim, C. S. (2018). Short duration cancer treatment: inspired by a fast bio-resorbable smart nano-fiber device containing NIR lethal polydopamine nanospheres for effective chemo-photothermal cancer therapy. International Journal of Nanomedicine, 13, 6375–6390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamornpathomkul, B., Wongkajornsilp, A., Laiwattanapaisal, W., Rojanarata, T., Opanasopit, P., & Ngawhirunpat, T. (2017). A combined approach of hollow microneedles and nanocarriers for skin immunization with plasmid DNA encoding ovalbumin. International Journal of Nanomedicine, 12, 885–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis, J. (2012). Claiming nanotechnology: Improving USPTO efforts at classification of emerging nano-enabled pharmaceutical technologies. Northwestern Journal of Technology and Intellectual Property, 10(3), 169–208.

    Google Scholar 

  • Park, J., Kim, J., Kim, S. Y., Cheong, W. H., Jang, J., Park, Y. G., Na, K., Kim, Y. T., Heo, J. H., Lee, C. Y., Lee, J. H., Bien, F., & Park, J. U. (2018, January). Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances, 1–11, 24.

    Google Scholar 

  • Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Lu, G. Q. M. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3, 2801–2818.

    Article  CAS  PubMed  Google Scholar 

  • Powers, K. W., Carpinone, P. L., & Siebein, K. N. (2012). Characterization of nanomaterials for toxicological studies. Methods in Molecular Biology, 926, 13–32.

    Article  CAS  PubMed  Google Scholar 

  • Riasat, R., Guangjun, N., Riasat, Z., Aslam, I., & Sakeena, M. (2016). Effects of nanoparticles on gastrointestinal disorders and therapy. Journal of Clinical Toxicology, 6, 4.

    Article  CAS  Google Scholar 

  • Rivera, G. P., et al. (2010). Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future. ACS Nano, 4(10), 5527–5531.

    Article  CAS  Google Scholar 

  • Roy, R., Kumar, S., Tripathi, A., Das, M., & Dwivedi, P. D. (2014). Interactive threats of nanoparticles to the biological system. Immunology Letters, 158, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Safi, M., Courtois, J., et al. (2011). The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials, 32(35), 9353–9363.

    Article  CAS  PubMed  Google Scholar 

  • Saleh, Y. E., Gepreel, M. A., & Allam, N. K. (2017). Functional nano-architectures for enhanced drug eluting stents. Scientific Reports, 7, 40291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SCENIHR, Opinion on the Appropriateness of the Risk Assessment Methodology in Accordance with the Technical Guidance Documents for New and Existing Substances for Assessing the Risks of Nanomaterials. 21e22 June 2007. Scientific Committee on Emerging and Newly-Identified Health Risks. 2007.

    Google Scholar 

  • Sengupta, J., Ghosh, S., Datta, P., Gomes, A., & Gomes, A. (2014). Physiologically important metal nanoparticles and their toxicity. Journal of Nanoscience and Nanotechnology, 14, 990–1006.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P., & Heyder, J. (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 109(4), 547–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Department of Health and Human Services Food and Drug Administration. (2017, December). Drug products, including biological products, that contain nanomaterials guidance for industry. 24pp.

    Google Scholar 

  • U.S. FDA. (2014a) Guidance for industry: Safety of nanomaterials in cosmetic products. 1–16, June 2014.

    Google Scholar 

  • U.S. FDA. (2014b). Guidance for industry: Assessing the effects of significant manufacturing process changes, including emerging technologies, on the safety and regulatory status of food ingredients and food contact substances, including food ingredients that are color additives, 1–29, June 2014.

    Google Scholar 

  • U.S. FDA. (2015). Guidance for Industry: Use of Nanomaterials in Food for Animals. 1–11, August 2015.

    Google Scholar 

  • U.S. FDA. (2016). Use of International Standard ISO 10993-1, “Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process.” Guidance for Industry and Food and Drug Administration Staff. June 16, 2016, pp. 1–65.

    Google Scholar 

  • U.S. Food and Drug Administration. (2014) Considering whether an FDA-regulated product involves the application of nanotechnology June 2014. https://www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htm. Accessed 31 December 2018.

  • Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 6, 1952–1967.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. Y., Lai, S. K., et al. (2011). Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS One, 6(6), e21547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. X., Song, Z. M., Cheng, B., Xiang, K., Chen, X. X., et al. (2014). Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells. Journal of Applied Toxicology, 34, 424–435.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Pengkai, Q., Yonghui, D., Maitz, M. F., Zhi, L. Y., Qiu, F. T., Kaiqin, X., Yang, L., & Nan, H. (2015). A biocompatible and functional adhesive amine rich coating based on dopamine polymerization. Journal of Materials Chemistry B, 3, 72–81.

    Article  CAS  PubMed  Google Scholar 

  • Yin, R. X., Yang, D. Z., & Wu, J. Z. (2014). Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics, 4(2), 175–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, H. S., Oh, J. E., Lee, K. H., & Park, T. G. (1999). Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharmaceutical Research, 16, 1114–1118.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, Y., Churei, H., Takeuchi, Y., Wada, T., Uo, M., Izumi, Y., & Ueno, T. (2018). Novel antibacterial mouthguard material manufactured using silver-nanoparticle-embedded ethylene-vinyl acetate copolymer masterbatch. Dental Materials Journal, 37(3), 437–444.

    Article  PubMed  Google Scholar 

  • Zhang, L., Shizhang, Q., Yonggang, J., Huagui, Y., Sandy, B., Frances, S., Zifeng, Y., Xiaolin, W., Zhengping, H., & Max, L. (2008). Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructured. Advanced Functional Materials, 18, 3203–3212.

    Article  CAS  Google Scholar 

  • Zhang, H., Burnum, K. E., et al. (2011). Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 11(23), 4569–4577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Chu, P. K., Zhang, Y., & Wu, Z. (2009). Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91(1), 470–480.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Jiang, C., Li-jie, X., Ying, X., Ping, Y., Jingan, L., Jue-jue, W., & Nan, H. (2014). Fabrication of 3D TiO2 micromesh on silicon surface and its effects on platelet adhesion. Materials Letters, 132, 149–152.

    Article  CAS  Google Scholar 

  • Zolnik, B. S., González-Fernández, A., Sadrieh, N., & Dobrovolskaia, M. A. (2010). Nanoparticles and the immune system. Endocrinology, 151(2), 458–465.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Hobson PhD, DABT .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hobson, D.W. (2019). Nanodevices. In: Integrated Safety and Risk Assessment for Medical Devices and Combination Products. Springer, Cham. https://doi.org/10.1007/978-3-030-35241-7_10

Download citation

Publish with us

Policies and ethics