Skip to main content

Introduction to Epigenetic Inheritance: Definition, Mechanisms, Implications and Relevance

  • Chapter
  • First Online:
Beyond Our Genes

Abstract

Complex phenotypes result from the interaction between genetic and environmental informations. Almost a decade ago, the discovery of acquired epigenetic inheritance has shown that individual’s environmental experiences can influence developmental and phenotypic trajectories across several generations. The field is now starting to unveil the molecular mechanisms, while its relevance for complex disease risk and adaptive evolution is still unclear and strongly debated. The aim of this chapter is to introduce the reader to the concept of epigenetic inheritance, provide an overview on the underlying molecular determinants and highlight its potential relevance for individual’s susceptibility to complex, non-mendelian, diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darwin C. The Origin of The Species; 1859. p. 1–247.

    Google Scholar 

  2. Lamarck. Recherches sur l’organisation des corps vivans et particulièrement sur son origine, sur la cause de ses développemens et des progrès de sa composition; 2003. p. 1–223.

    Google Scholar 

  3. Dupont C, Armant D, Brenner C. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27:351–7. https://doi.org/10.1055/s-0029-1237423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9. https://doi.org/10.1073/pnas.0806560105.

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Rooij SR, Wouters H, Yonker JE, et al. Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci U S A. 2010;107:16881–6. https://doi.org/10.1073/pnas.1009459107.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents“ and grandparents” slow growth period. Eur J Hum Genet. 2002;10:682–8. https://doi.org/10.1038/sj.ejhg.5200859.

    Article  CAS  PubMed  Google Scholar 

  7. Kaati G, Bygren LO, Pembrey M, Sjöström M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15:784–90. https://doi.org/10.1038/sj.ejhg.5201832.

    Article  CAS  PubMed  Google Scholar 

  8. Skvortsova K, Iovino N, Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19:1–17. https://doi.org/10.1038/s41580-018-0074-2.

    Article  CAS  Google Scholar 

  9. Panzeri I, Pospisilik JA. Epigenetic control of variation and stochasticity in metabolic disease. Mol Metab. 2018;14:26–38. https://doi.org/10.1016/j.molmet.2018.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sass S, Wu M, Dyckhoff D, et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48:1–4. https://doi.org/10.1038/ng.3527.

    Article  CAS  Google Scholar 

  11. Sharma U, Conine CC, Shea JM, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2015;351:1–9. https://doi.org/10.1126/science.aad6780.

    Article  CAS  Google Scholar 

  12. Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2015;351:1–8. https://doi.org/10.1126/science.aad7977.

    Article  CAS  Google Scholar 

  13. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9. https://doi.org/10.1038/nn.3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun W, Dong H, Becker AS, et al. Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat Med. 2018;24:1–18. https://doi.org/10.1038/s41591-018-0102-y.

    Article  CAS  Google Scholar 

  15. Heindel JJ, Balbus J, Birnbaum L, et al. Developmental origins of health and disease: integrating environmental influences. Endocrinology. 2015;156:3416–21. https://doi.org/10.1210/EN.2015-1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jimenez-Chillaron JC, Jimenez-Chillaron JC, Isganaitis E, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58:460–8. https://doi.org/10.2337/db08-0490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001;50:2279–86. https://doi.org/10.2337/diabetes.50.10.2279.

    Article  CAS  PubMed  Google Scholar 

  18. Ozanne SE, Hales CN. The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proc Nutr Soc. 2007;58:615–9. https://doi.org/10.1017/S0029665199000804.

    Article  Google Scholar 

  19. Berends LM, Fernandez-Twinn DS, Martin-Gronert MS, et al. Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue. Int J Obes. 2012;37:1051–7. https://doi.org/10.1038/ijo.2012.196.

    Article  CAS  Google Scholar 

  20. Hardikar AA, Satoor SN, Karandikar MS, et al. Multigenerational Undernutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab. 2015;22:1–9. https://doi.org/10.1016/j.cmet.2015.06.008.

    Article  CAS  Google Scholar 

  21. Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.

    Article  CAS  PubMed  Google Scholar 

  22. Montrose L, Padmanabhan V, Goodrich JM, et al. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics. 2018;13:301–9. https://doi.org/10.1080/15592294.2018.1448680.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Berghänel A, Heistermann M, Schülke O, Ostner J. Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals. Proc Natl Acad Sci U S A. 2017;114:E10658–66. https://doi.org/10.1073/pnas.1707152114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ronald A, Pennell CE, Whitehouse AJO. Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front Psychology. 2011;1:1–8. https://doi.org/10.3389/fpsyg.2010.00223.

    Article  Google Scholar 

  25. Rosenqvist MA, Sjölander A, Ystrom E, et al. Adverse family life events during pregnancy and ADHDsymptoms in five-year-old offspring. J Child Psychol Psychiatr. 2018;60:665–75. https://doi.org/10.1111/jcpp.12990.

    Article  Google Scholar 

  26. Christine H, Nemeroff C. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. BPS. 2001;49:1023–39. https://doi.org/10.1016/S0006-3223(01)01157-X.

    Article  Google Scholar 

  27. Kappil M, Wright RO, Sanders AP. Developmental Origins of Common Disease: Epigenetic Contributions to Obesity. 2016; https://doi.org/10.1146/annurev-genom-090314-050057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112:13699–704. https://doi.org/10.1073/pnas.1508347112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodgers AB, Morgan CP, Bronson SL, et al. Paternal stress exposure alters sperm MicroRNA content and reprograms offspring HPA stress Axis regulation. J Neurosci. 2013;33:9003–12. https://doi.org/10.1523/JNEUROSCI.0914-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gapp K, Soldado-Magraner S, Alvarez-Sánchez M, et al. Early life stress in fathers improves behavioural flexibility in their offspring. Nat Commun. 2014;5:5466. https://doi.org/10.1038/ncomms6466.

    Article  PubMed  Google Scholar 

  31. Annacondia ML, Martinez G. Chapter 12 – plant models of transgenerational epigenetic inheritance. Transgenerational Epigenetics. 2019;263–82. https://doi.org/10.1016/B978-0-12-816363-4.00012-2.

    Chapter  Google Scholar 

  32. Weiser NE, Kim JK.Multigenerational Regulation of the Caenorhabditis elegansChromatin Landscape by Germline Small RNAs. Annu Rev Genet 2019;53:annurev–genet–112618–043505–23. doi: https://doi.org/10.1146/annurev-genet-112618-043505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018;19:436–50. https://doi.org/10.1038/s41580-018-0008-z.

    Article  CAS  PubMed  Google Scholar 

  34. Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–33. https://doi.org/10.1038/nature09303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30. https://doi.org/10.1126/science.1169786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction. 2013;145:R117–37. https://doi.org/10.1530/REP-12-0511.

    Article  CAS  PubMed  Google Scholar 

  37. Nicholls RD, Knepper JL. Genome Organization, Function, and Imprinting in Prader-Willi and Angelman Syndromes. 2003; https://doi.org/10.1146/annurev.genom.2.1.153.

    Article  CAS  PubMed  Google Scholar 

  38. Dalgaard K, Landgraf K, Heyne S, et al. Trim28 Haploinsufficiency triggers bi-stable epigenetic obesity. Cell. 2016;164:353–64. https://doi.org/10.1016/j.cell.2015.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adalsteinsson B, Ferguson-Smith A. Epigenetic control of the genome—lessons from genomic imprinting. Genes (Basel). 2014;5:635–55. https://doi.org/10.3390/genes5030635.

    Article  CAS  Google Scholar 

  40. Tang WWC, Dietmann S, Irie N, et al. A unique gene regulatory network resets the human Germline Epigenome for development. Cell. 2015;161:1453–67. https://doi.org/10.1016/j.cell.2015.04.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kazachenka A, Bertozzi TM, Sjoberg-Herrera MK, et al. Identification, characterization, and heritability of murine metastable Epialleles: implications for non- genetic inheritance. Cell. 2018;175:1–27. https://doi.org/10.1016/j.cell.2018.09.043.

    Article  CAS  Google Scholar 

  42. Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004;14:R546–51. https://doi.org/10.1016/j.cub.2004.07.007.

    Article  CAS  PubMed  Google Scholar 

  43. van de Werken C, van der Heijden GW, Eleveld C, et al (1AD) Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications. Nature Communications 5:1–15. doi: https://doi.org/10.1038/ncomms6868

  44. Puschendorf M, Terranova R, Boutsma E, et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet. 2008;40:411–20. https://doi.org/10.1038/ng.99.

    Article  CAS  PubMed  Google Scholar 

  45. Lesch BJ, Dokshin GA, Young RA, et al. A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis. Proc Natl Acad Sci U S A. 2013;110:16061–6. https://doi.org/10.1073/pnas.1315204110.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lesch BJ, Silber SJ, McCarrey JR, Page DC. Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat Genet. 2016;48:1–10. https://doi.org/10.1038/ng.3591.

    Article  CAS  Google Scholar 

  47. Erkek S, Hisano M, Liang C-Y, et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol. 2013;20:868–75. https://doi.org/10.1038/nsmb.2599.

    Article  CAS  PubMed  Google Scholar 

  48. Brykczynska U, Hisano M, Erkek S, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Publ Group. 2010;17:679–87. https://doi.org/10.1038/nsmb.1821.

    Article  CAS  Google Scholar 

  49. Siklenka K, Erkek S, Godmann M, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350:aab2006–aab2006. doi: https://doi.org/10.1126/science.aab2006

    Article  PubMed  Google Scholar 

  50. Stringer JM, Forster SC, Qu Z, et al. Reduced PRC2 function alters male germline epigenetic programming and paternal inheritance. BMC Biol. 2018;16:1–20. https://doi.org/10.1186/s12915-018-0569-5.

    Article  CAS  Google Scholar 

  51. Lesch BJ, Tothova Z, Morgan EA, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. elife. 2019;1–29. https://doi.org/10.7554/eLife.39380.001.

  52. Zheng H, Huang B, Zhang B, et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell. 2016;63:1066–79. https://doi.org/10.1016/j.molcel.2016.08.032.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang B, Zheng H, Huang B, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537:1–18. https://doi.org/10.1038/nature19361.

    Article  CAS  Google Scholar 

  54. Liu X, Wang C, Liu W, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nat Publ Group. 2016;537:558–62. https://doi.org/10.1038/nature19362.

    Article  CAS  Google Scholar 

  55. Inoue A, Jiang L, Lu F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nat Publ Group. 2017;547:419–24. https://doi.org/10.1038/nature23262.

    Article  CAS  Google Scholar 

  56. Prokopuk L, Stringer JM, White CR, et al. Loss of maternal EED results in postnatal overgrowth. Clin Epigenetics. 2018;10:1–14. https://doi.org/10.1186/s13148-018-0526-8.

    Article  CAS  Google Scholar 

  57. Andreu-Vieyra CV, Chen R, Agno JE, et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 Trimethylation and transcriptional silencing. PLoS Biol. 2010;8:e1000453. https://doi.org/10.1371/journal.pbio.1000453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dahl JA, Jung I, Aanes H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature. 2016;537:548–52. https://doi.org/10.1038/nature19360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schoelz JM, Riddle NC. Chapter 9 - heritable generational epigenetic effects through small noncoding RNA. Transgenerational Epigenetics. 2019;185–212. https://doi.org/10.1016/B978-0-12-816363-4.00009-2.

    Chapter  Google Scholar 

  60. Zhang Y, Zhang X, Shi J, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20:535–40. https://doi.org/10.1038/s41556-018-0087-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu L, Lu Y, Jiao Y, et al. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab. 2016;23:735–43. https://doi.org/10.1016/j.cmet.2016.01.014.

    Article  CAS  PubMed  Google Scholar 

  62. Gapp K, Steenwyk G, Germain PL, et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry. 2018:1–13. https://doi.org/10.1038/s41380-018-0271-6.

  63. Short AK, Fennell KA, Perreau VM, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. 2016;6:e837–12. https://doi.org/10.1038/tp.2016.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dickson DA, Paulus JK, Mensah V, et al. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl Psychiatry. 2018;8:1–10. https://doi.org/10.1038/s41398-018-0146-2.

    Article  CAS  Google Scholar 

  65. Sarker G, Sun W, Rosenkranz D, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci U S A. 2019;116:10547–56. https://doi.org/10.1073/pnas.1820810116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fullston T, Ohlsson Teague EMC, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27:4226–43. https://doi.org/10.1096/fj.12-224048.

    Article  CAS  PubMed  Google Scholar 

  67. Stanford KI, Rasmussen M, Baer LA, et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes. 2018;67:2530–40. https://doi.org/10.2337/db18-0667.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang Q, Lin J, Liu M, et al. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci Adv. 2016;2:e1501482. https://doi.org/10.1126/sciadv.1501482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rassoulzadegan M, Grandjean V, Gounon P, et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441:469–74. https://doi.org/10.1038/nature04674.

    Article  CAS  PubMed  Google Scholar 

  70. Tang F, Kaneda M, O’Carroll D, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21:644–8. https://doi.org/10.1101/gad.418707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yuan S, Oliver D, Schuster A, et al. Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci Rep. 2015;5:9266–15. https://doi.org/10.1038/srep09266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan S, Schuster A, Tang C, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635–47. https://doi.org/10.1242/dev.131755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2018;47:D1005–12. https://doi.org/10.1093/nar/gky1120.

    Article  CAS  PubMed Central  Google Scholar 

  74. Goldstein D. Common genetic variation and human traits. N Engl J Med. 2009;360:1696–8.

    Article  CAS  PubMed  Google Scholar 

  75. Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9:17. https://doi.org/10.1186/s40246-015-0041-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53. https://doi.org/10.1038/nature08494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maher B. Personal genomes: the case of the missing heritability. Nature News. 2008;456:18–21. https://doi.org/10.1038/456018a.

    Article  CAS  Google Scholar 

  78. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50. https://doi.org/10.1038/nrg2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465:721–7. https://doi.org/10.1038/nature09230.

    Article  CAS  PubMed  Google Scholar 

  80. Danchin É, Wagner RH. Inclusive heritability: combining genetic and non-genetic information to study animal behavior and culture. Oikos. 2010;119:210–8. https://doi.org/10.1111/j.1600-0706.2009.17640.x.

    Article  Google Scholar 

  81. Furrow RE, Christiansen FB, Feldman MW. Environment-sensitive epigenetics and the heritability of complex diseases. Genetics. 2011;189:1377–87. https://doi.org/10.1534/genetics.111.131912.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bubb KL, Queitsch C. A Two-State Epistasis Model Reduces Missing Heritability of Complex Traits. bioRxiv. 2016;p. 1–31. https://doi.org/10.1101/017491.

    Book  Google Scholar 

  83. Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182:845–50. https://doi.org/10.1534/genetics.109.102798.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tal O, Kisdi E, Jablonka E. Epigenetic contribution to covariance between relatives. Genetics. 2010;184:1037–50. https://doi.org/10.1534/genetics.109.112466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sarkies P. Molecular mechanisms of epigenetic inheritance_ possible evolutionary implications. Semin Cell Dev Biol. 2019;1–0. doi: https://doi.org/10.1016/j.semcdb.2019.06.005.

    Article  Google Scholar 

  86. Öst A, Lempradl A, Casas E, et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159:1352–64. https://doi.org/10.1016/j.cell.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  87. Radford EJ, Radford EJ, Ito M, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;345:1255903. https://doi.org/10.1126/science.1255903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carone BR, Fauquier L, Habib N, et al. Paternally induced Transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–96. https://doi.org/10.1016/j.cell.2010.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hales CN, bulletin DBBM, 2001 thrifty phenotype hypothesis | British Medical Bulletin | Oxford Academic. doi:https://doi.org/10.1093/bmb/60.1.5

    Article  CAS  PubMed  Google Scholar 

  90. Vaag AA, Grunnet LG, Arora GP, Brøns C. The thrifty phenotype hypothesis revisited. Diabetologia. 2012;55:2085–8. https://doi.org/10.1007/s00125-012-2589-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burggren W. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology. 2016;5:24–2. https://doi.org/10.3390/biology5020024.

    Article  PubMed Central  Google Scholar 

  92. Alexandrov LB, Jones PH, Wedge DC, et al. Clock-like mutational processes in human somatic cells. Nat Publ Group. 2015;47:1402–7. https://doi.org/10.1038/ng.3441.

    Article  CAS  Google Scholar 

  93. Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature. 2012;488:504–7. https://doi.org/10.1038/nature11273.

    Article  CAS  PubMed  Google Scholar 

  94. Bourque G, Burns KH, Gehring M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:1–12. https://doi.org/10.1186/s13059-018-1577-z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Teperino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lassi, M., Teperino, R. (2020). Introduction to Epigenetic Inheritance: Definition, Mechanisms, Implications and Relevance. In: Teperino, R. (eds) Beyond Our Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-35213-4_9

Download citation

Publish with us

Policies and ethics