Skip to main content

Gene-Environment Interaction and Cancer

  • Chapter
  • First Online:
Book cover Beyond Our Genes

Abstract

It is widely recognized that cancer is an epigenetic disease. Hypomethylation of cytosine residues of CpG dinucleotides, site-specific CpG promoter hypermethylation, altered histone methylation and acetylation and dysregulation of miRNAs have been shown in several types of cancers. Epigenetic events are susceptible to environmental and lifestyle factors, including diet, endocrine disruptors and circadian rhythm. Nutrition is thought to be the most influential of all the external environmental factors due to its ability to affect the interplay between genome and epigenome. Nutrients affect epigenetic machinery mainly by promoting or inhibiting enzymes involved in DNA methylation and histone modifications. Therefore, poliphenols, isothiocyanates, selenium and folate, display a chemo-preventive potential. On the opposite, other nutrients, such as glucose and lipid-derived free fatty acids exert pro-tumorigenic activities. The epigenomic landscape in cancers may be modified also by environmental chemicals with endocrine disrupting activity. Plasticizers (bisphenol A and phthalates), polychlorinated biphenyls, polybrominated diethyl ethers, dioxins, pesticides (methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane), fungicides (vinclozolin) and herbicides may have either direct (on cancer cells) or indirect (on metabolic imbalance) effects on cancer onset and progression by inducing aberrant epigenetic modifications that persist into later life, with the capacity of being transgenerationally inherited. Finally, the disruption of circadian rhythms (light, sleep/awake cycles, feeding) may also contribute to the onset and the progression of cancer-related phenotypes by impinging on epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alenghat T, Artis D. Epigenomic regulation of host-microbiota interactions. Trends Immunol. 2014 Nov;35(11):518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alvarez-García V, González A, Martínez-Campa C, Alonso-González C, Cos S. Melatonin modulates aromatase activity and expression in endothelial cells. Oncol Rep. 2013 May;29(5):2058–64.

    Article  PubMed  CAS  Google Scholar 

  3. Ambrosio MR, D'Esposito V, Costa V, Liguoro D, Collina F, Cantile M, Prevete N, Passaro C, Mosca G, De Laurentiis M, Di Bonito M, Botti G, Franco R, Beguinot F, Ciccodicola A, Formisano P. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells. Oncotarget. 2017 Nov 20;8(65):109000–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005 Jun 3;308(5727):1466–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ariemma F, D'Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A, Cimmino I, Longo M, Beguinot F, Formisano P, Valentino R. Low-dose bisphenol-a impairs Adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One. 2016 Mar 4;11(3):e0150762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Asgari S. Epigenetic modifications underlying symbiont-host interactions. Adv Genet. 2014;86:253–76.

    Article  CAS  PubMed  Google Scholar 

  7. Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L. Cogliano V; WHO International Agency for Research on Cancer monograph working group. A review of human carcinogens--part F: chemical agents and related occupations. Lancet Oncol. 2009 Dec;10(12):1143–4.

    Article  PubMed  Google Scholar 

  8. Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr. 2009;21(2):243–51.. Review

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015 Jan 30;7(2):922–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bracci M, Manzella N, Copertaro A, Staffolani S, Strafella E, Barbaresi M, Copertaro B, Rapisarda V, Valentino M, Santarelli L. Rotating-shift nurses after a day off: peripheral clock gene expression, urinary melatonin, and serum 17-β-estradiol levels. Scand J Work Environ Health. 2014 May 1;40(3):295–304.

    Article  CAS  PubMed  Google Scholar 

  11. Brainard GC, Richardson BA, King TS, Reiter RJ. The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain Res. 1984 Mar 5;294(2):333–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology. 2009 Jul;150(7):3376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan R, Schmidt M, Rahnenführer J, Oster H, Hengstler JG. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13(20):3282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004 Aug;4(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  15. Cao Y. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med. 2015 Sep;9(3):261–74.

    Article  PubMed  Google Scholar 

  16. Coon SL, Munson PJ, Cherukuri PF, Sugden D, Rath MF, Møller M, Clokie SJ, Fu C, Olanich ME, Rangel Z, Werner T;. NISC comparative sequencing program, Mullikin JC, Klein DC. Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci U S A 2012;109(33):13319–13324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Esposito V, Passaretti F, Hammarstedt A, Liguoro D, Terracciano D, Molea G, Canta L, Miele C, Smith U, Beguinot F, Formisano P. Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia. 2012;55:2811–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. D'Esposito V, Liguoro D, Ambrosio MR, Collina F, Cantile M, Spinelli R, Raciti GA, Miele C, Valentino R, Campiglia P, De Laurentiis M, Di Bonito M, Botti G, Franco R, Beguinot F, Formisano P. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 2016 Apr 26;7(17):24495–509.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daniel M, Tollefsbol TO. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol. 2015 Jan 1;218(Pt 1):59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dauchy RT, Xiang S, Mao L, Brimer S, Wren MA, Yuan L, Anbalagan M, Hauch A, Frasch T, Rowan BG, Blask DE, Hill SM. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 2014 Aug 1;74(15):4099–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001 Oct 17;93(20):1557–62.

    Article  CAS  PubMed  Google Scholar 

  22. deHaro D, Kines KJ, Sokolowski M, Dauchy RT, Streva VA, Hill SM, Hanifin JP, Brainard GC, Blask DE, Belancio VP. Regulation of L1 expression and retrotransposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night. Nucleic Acids Res. 2014 Jul;42(12):7694–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 2010 Jun;1(3):146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esteller M. Epigenetics in cancer. N Engl J Med. 2008 Mar 13;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  25. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006 Jan;7(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira LL, Couto R, Oliveira PJ. Bisphenol a as epigenetic modulator: setting the stage for carcinogenesis? Eur J Clin Investig. 2015 Jan;45(Suppl 1):32–6.

    Article  CAS  Google Scholar 

  27. Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, et al. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94:690–7.

    Article  PubMed  Google Scholar 

  28. Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Grechez-Cassiau A, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004;64:7879–85.

    Article  CAS  PubMed  Google Scholar 

  29. Fleisch AF, Wright RO, Baccarelli AA. Environmental epigenetics: a role in endocrine disease? J Mol Endocrinol. 2012 Aug 30;49(2):R61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuhr L, El-Athman R, Scrima R, Cela O, Carbone A, Knoop H, Li Y, Hoffmann K, Laukkanen MO, Corcione F, Steuer R, Meyer TF, Mazzoccoli G, Capitanio N, Relógio A. The circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal Cancer. EBioMedicine. 2018 Jul;33:105–21.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015 Dec;36(6):E1–E150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grant SG, Melan MA, Latimer JJ, Witt-Enderby PA. Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev Mol Med. 2009 Feb 5;11:e5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hahn RA. Profound bilateral blindness and the incidence of breast cancer. Epidemiology. 1991 May;2(3):208–10.

    Article  CAS  PubMed  Google Scholar 

  34. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011 Aug;3(4):503–18.

    Article  CAS  PubMed  Google Scholar 

  35. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013 Aug;17(4):273–84.

    Article  PubMed  Google Scholar 

  36. Hernández-Aguilera A, Fernández-Arroyo S, Cuyàs E, Luciano-Mateo F, Cabre N, Camps J, Lopez-Miranda J, Menendez JA, Joven J. Epigenetics and nutrition-related epidemics of metabolic diseases: current perspectives and challenges. Food Chem Toxicol. 2016 Oct;96:191–204.

    Article  PubMed  CAS  Google Scholar 

  37. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer. 2015 Jun;22(3):R183–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;419:841–4.

    Article  CAS  PubMed  Google Scholar 

  39. Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2012 Feb;41(1):79–105.

    Article  PubMed  Google Scholar 

  40. Hrushesky WJ, Grutsch J, Wood P, Yang X, Oh EY, Ansell C, Kidder S, Ferrans C, Quiton DF, Reynolds J, Du-Quiton J, Levin R, Lis C, Braun D. Circadian clock manipulation for cancer prevention and control and the relief of cancer symptoms. Integr Cancer Ther. 2009 Dec;8(4):387–97.

    Article  PubMed  Google Scholar 

  41. Jobling S, Bjerregaard P, Blumberg B, et al. Evidence for endocrine disruption in humans and wildlife: endocrine disruptors and hormone-related cancers. In: Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller RT, eds. State of the Science of Endocrine Disrupting Chemicals – 2012. Chapter 2.7. Geneva: World Health Organization; 2012:126–142.

    Google Scholar 

  42. Johnson C, Warmoes MO, Shen X, Locasale JW. Epigenetics and cancer metabolism. Cancer Lett. 2015 Jan 28;356(2 Pt A):309–14.

    Article  CAS  PubMed  Google Scholar 

  43. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002 Jun;3(6):415–28.

    Article  CAS  PubMed  Google Scholar 

  44. Joseph PV, Abey SK, Henderson WA. Emerging role of Nutri-epigenetics in inflammation and Cancer. Oncol Nurs Forum. 2016 Nov 1;43(6):784–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klil-Drori AJ, Azoulay L, Pollak MN. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nat Rev Clin Oncol. 2017 Feb;14(2):85–99.

    Article  CAS  PubMed  Google Scholar 

  46. Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014 Mar 12;21(2):T33–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kogevinas M, Espinosa A, Castelló A, Gómez-Acebo I, Guevara M, Martin V, Amiano P, Alguacil J, Peiro R, Moreno V, Costas L, Fernández-Tardón G, Jimenez JJ, Marcos-Gragera R, Perez-Gomez B, Llorca J, Moreno-Iribas C, Fernández-Villa T, Oribe M, Aragones N, Papantoniou K, Pollán M, Castano-Vinyals G, Romaguera D. Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain study). Int J Cancer. 2018 Jul;17

    Google Scholar 

  48. Kuo SJ, Chen ST, Yeh KT, Hou MF, Chang YS, Hsu NC, Chang JG. Disturbance of circadian gene expression in breast cancer. Virchows Arch. 2009 Apr;454(4):467–74.

    Article  CAS  PubMed  Google Scholar 

  49. Lesicka M, Jabłońska E, Wieczorek E, Seroczyńska B, Siekierzycka A, Skokowski J, Kalinowski L, Wąsowicz W, Reszka E. Altered circadian genes expression in breast cancer tissue according to the clinical characteristics. PLoS One. 2018 Jun 29;13(6):e0199622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lewis KA, Tollefsbol, TO. The influence of an epigenetics diet on the cancer epigenome. Epigenomics. 2017 Sep;9(9):1153–5.

    Article  CAS  PubMed  Google Scholar 

  51. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980 Dec 12;210(4475):1267–9.

    Article  CAS  PubMed  Google Scholar 

  52. Liang X, FitzGerald GA. Timing the microbes: the circadian rhythm of the gut microbiome. J Biol Rhythm. 2017;32:505–15.

    Article  CAS  Google Scholar 

  53. Litlekalsoy J, Rostad K, Kalland KH, Hostmark JG, Laerum OD. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes. BMC Cancer. 2016 Jul 27;16:549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lopez J, Percharde M, Coley HM, Webb A, Crook T. The context and potential of epigenetics in oncology. Br J Cancer. 2009 Feb 24;100(4):571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lucas RJ, Lall GS, Allen AE, Brown TM. How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Prog Brain Res. 2012;199:1–18.

    Article  CAS  PubMed  Google Scholar 

  56. Mazzoccoli G, Vinciguerra M, Papa G, Piepoli A. Circadian clock circuitry in colorectal cancer. World J Gastroenterol. 2014 Apr 21;20(15):4197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mazzoccoli G, Colangelo T, Panza A, Rubino R, Tiberio C, Palumbo O, Carella M, Trombetta D, Gentile A, Tavano F, Valvano MR, Storlazzi CT, Macchia G, De Cata A, Bisceglia G, Capocefalo D, Colantuoni V, Sabatino L, Piepoli A, Mazza T. Analysis of clock gene-miRNA correlation networks reveals candidate drivers in colorectal cancer. Oncotarget. 2016 Jul 19;7(29):45444–61.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015 May;145(1):5–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mteyrek A, Filipski E, Guettier C, Okyar A, Lévi F. Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget. 2016 Dec 27;7(52):85832–47.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nagata C, Tamura T, Wada K, Konishi K, Goto Y, Nagao Y, et al. Sleep duration, nightshift work, and the timing of meals and urinary levels of 8-isoprostane and 6-sulfatoxymelatonin in Japanese women. Chronobiol Int. 2017;34:1187–96.

    Article  CAS  PubMed  Google Scholar 

  61. Nooshinfar E, Safaroghli-Azar A, Bashash D, Akbari ME. Melatonin, an inhibitory agent in breast cancer. Breast Cancer. 2017 Jan;24(1):42–51.

    Article  PubMed  Google Scholar 

  62. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109:307–20.

    Article  CAS  PubMed  Google Scholar 

  63. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer- mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.

    Article  CAS  PubMed  Google Scholar 

  65. Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer. 2015 Apr;22(2):R69–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reszka E, Przybek M. Circadian genes in breast cancer. Adv Clin Chem. 2016;75:53–70.

    Article  CAS  PubMed  Google Scholar 

  67. Samtani R, Sharma N, Garg D. Effects of endocrine-disrupting chemicals and epigenetic modifications in ovarian cancer: a review. Reprod Sci. 2018 Jan;25(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  68. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA. Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J Natl Cancer Inst. 2001 Oct 17;93(20):1563–8.

    Article  CAS  PubMed  Google Scholar 

  69. Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell. 2002 Dec 27;111(7):919–22.

    Article  CAS  PubMed  Google Scholar 

  70. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science. (New York, NY. 2000;288:1013–9.

    Article  CAS  PubMed  Google Scholar 

  71. Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet. 2014 Jun7;383(9933):1947–8.

    Article  PubMed  Google Scholar 

  72. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Adverse health effects of nighttime lighting: comments on American Medical Association policy statement. Am J Prev Med. 2013 Sep;45(3):343–6.

    Article  PubMed  Google Scholar 

  73. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014 May-Jun;64(3):207–18.

    Article  PubMed  Google Scholar 

  74. Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Benbrahim-Tallaa L. Cogliano V; WHO international agency for research on cancer monograph working group. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007 Dec;8(12):1065–6.

    Article  PubMed  Google Scholar 

  75. Supic G, Jagodic M, Magic Z. Epigenetics: a new link between nutrition and cancer. Nutr Cancer. 2013;65(6):781–92.

    Article  CAS  PubMed  Google Scholar 

  76. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286:355–65.

    Article  CAS  PubMed  Google Scholar 

  77. Taniguchi H, Fernández AF, Setién F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009 Nov 1;69(21):8447–54.

    Article  CAS  PubMed  Google Scholar 

  78. Truong T, Liquet B, Menegaux F, Plancoulaine S, Laurent-Puig P, Mulot C, et al. Breast cancer risk, nightwork, and circadian clock gene polymorphisms. Endocr Relat Cancer. 2014;21:629–38.

    Article  CAS  PubMed  Google Scholar 

  79. Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis. 2014 Jan 28;5(6):419–29.

    PubMed  PubMed Central  Google Scholar 

  80. Valentino R, D'Esposito V, Passaretti F, Liotti A, Cabaro S, Longo M, Perruolo G, Oriente F, Beguinot F, Formisano P. Bisphenol-a impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells. PLoS One. 2013 Dec 9;8(12):e82099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Valentino R, D’Esposito V, Ariemma F, Cimmino I, Beguinot F, Formisano P. Bisphenol a environmental exposure and the detrimental effects on human metabolic health: is it necessary to revise the risk assessment in vulnerable population? J Endocrinol Investig. 2016 Mar;39(3):259–63.

    Article  CAS  Google Scholar 

  82. Verkasalo PK, Lillberg K, Stevens RG, Hublin C, Partinen M, Koskenvuo M, Kaprio J. Sleep duration and breast cancer: a prospective cohort study. Cancer Res. 2005 Oct 15;65(20):9595–600.

    Article  CAS  PubMed  Google Scholar 

  83. Verma M. Cancer control and prevention by nutrition and epigenetic approaches. Antioxid Redox Signal. 2012 Jul 15;17(2):355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Q, Ao Y, Yang K, Tang H, Chen D. Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma. Oncol Rep. 2016 Jun;35(6):3387–94.

    Article  CAS  PubMed  Google Scholar 

  85. Wegner M, Neddermann D, Piorunska-Stolzmann M. Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract. 2014 Aug;105(2):164–75.

    Article  CAS  PubMed  Google Scholar 

  86. West KE, Jablonski MR, Warfield B, Cecil KS, James M, Ayers MA, Maida J, Bowen C, Sliney DH, Rollag MD, Hanifin JP, Brainard GC. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol (1985). 2011 Mar;110(3):619–626.

    Article  PubMed  Google Scholar 

  87. Wong CC, Qian Y, Yu J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene. 2017 Jun 15;36(24):3359–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang X, Ho SM. Epigenetics meets endocrinology. J Mol Endocrinol. 2011 Feb;46(1):R11–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94:10907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Formisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Esposito, V., Ambrosio, M.R., Perruolo, G., Libutti, M., Formisano, P. (2020). Gene-Environment Interaction and Cancer. In: Teperino, R. (eds) Beyond Our Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-35213-4_6

Download citation

Publish with us

Policies and ethics