Skip to main content

Environmental Factors’ Interference in Endocrine Aspects of Male Reproduction

  • Chapter
  • First Online:
Beyond Our Genes

Abstract

Environmental chemicals, termed “obesogens,” acting as endocrine disruptors, alter lipid homeostasis and promote adipogenesis and lipid accumulation, consequently resulting in weight gain and contributing to obesity epidemic. Obesogens can regulate hypothalamic-pituitary-gonadal axis function at different levels within different critical windows of exposure, with different concentration-dependent intensity, and with multiple mechanisms of action hampering reproductive physiology. In this chapter, after an initial presentation of the history of obesogens, the direct perturbations on histopathology of the testis and sperm parameters and the indirect perturbations on hormonal secretion induced by obesogens on male reproductive system will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks. Lancet. 2006;367(9513):859–69.

    Article  PubMed  Google Scholar 

  2. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153(9):4097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(15):878–81.

    Article  CAS  PubMed  Google Scholar 

  5. Williams RR, Schweitzer RJ. Clear-cell adenocarcinoma of the vagina in a girl whose mother had taken diethylstilbestrol. Calif Med. 1973;118(6):53–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Puri S, Fenoglio CM, Richart RM, Townsend D. Clear cell carcinoma of cervix and vagina in progeny of women who received diethylstilbestrol: three cases with scanning and transmission electron microscopy. Am J Obstet Gynecol. 1977;128(5):550–5.

    Article  CAS  PubMed  Google Scholar 

  7. Robboy SJ, Scully RE, Welch WR, Herbst AL. Intrauterine diethylstilbestrol exposure and its consequences: pathologic characteristics of vaginal adenosis, clear cell adenocarcinoma, and related lesions. Arch Pathol Lab Med. 1977;101(1):1–5.

    CAS  PubMed  Google Scholar 

  8. Gassner FX, Reifenstein Jr EC, Algeo JW, Mattox WE. Effects of hormones on growth, fattening, and meat production potential of livestock. Recent Prog Horm Res, 1958. 14: p. 183–210; discussion 210-7.

    Google Scholar 

  9. McLachlan JA. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond. Andrology. 2016;4(4):684–94.

    Article  CAS  PubMed  Google Scholar 

  10. Davis FR. Silent spring after 50 years. Endeavour. 2012;36(4):129–30.

    Article  PubMed  Google Scholar 

  11. Folkman J. Transplacental carcinogenesis by stilbestrol. N Engl J Med. 1971;285(7):404–5.

    Article  CAS  PubMed  Google Scholar 

  12. Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. UNEP and FAO Rotterdam Convention http://www.pic.int 1998.

  14. UNEP and FAO Stockholm Convention http://www.chm.pops.int. 2001.

  15. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8(2):185–92.

    Article  PubMed  Google Scholar 

  16. Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20(9):2141–55.

    Article  CAS  PubMed  Google Scholar 

  17. Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect. 2013;121(3):359–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Plant TM. 60 years of Neuroendocrinology: the hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015;226(2):T41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weinbauer GF, LC, Simoni M, Nieschlag E, Physiology of testicular function, In: H.M. Behre Nieschlag E, Nieschlag S, editors. Andrology, 2010, Berlin: Springer.

    Google Scholar 

  20. Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64(1):16–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Connor AE, De Kretser DM. Inhibins in normal male physiology. Semin Reprod Med. 2004;22(3):177–85.

    Article  PubMed  Google Scholar 

  22. Corradi PF, Corradi RB, Greene LW. Physiology of the hypothalamic pituitary gonadal Axis in the male. Urol Clin North Am. 2016;43(2):151–62.

    Article  PubMed  Google Scholar 

  23. Pelletier C, Despres JP, Tremblay A. Plasma organochlorine concentrations in endurance athletes and obese individuals. Med Sci Sports Exerc. 2002;34(12):1971–5.

    Article  CAS  PubMed  Google Scholar 

  24. Pereira-Fernandes A, Dirinck E, Dirtu AC, Malarvannan G, Covaci A, Van Gaal L, et al. Expression of obesity markers and persistent organic pollutants levels in adipose tissue of obese patients: reinforcing the obesogen hypothesis? PLoS One. 2014;9(1):e84816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A. 2005;102(Suppl 1):6543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol. 2016;214(5):559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Redinger RN. The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol. 2007;3(11):856–63.

    Google Scholar 

  28. Hatch EE, Nelson JW, Stahlhut RW, Webster TF. Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl. 2010;33(2):324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. La Merrill M, Birnbaum LS. Childhood obesity and environmental chemicals. Mt Sinai J Med. 2011;78(1):22–48.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang-Peronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals and obesity development in humans: a review. Obes Rev. 2011;12(8):622–36.

    Article  CAS  PubMed  Google Scholar 

  31. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol a concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–10.

    Article  CAS  PubMed  Google Scholar 

  32. Trasande L, Attina TM, Blustein J. Association between urinary bisphenol a concentration and obesity prevalence in children and adolescents. JAMA. 2012;308(11):1113–21.

    Article  CAS  PubMed  Google Scholar 

  33. Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H, et al. Bisphenol a in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res. 2002;43(5):676–84.

    CAS  PubMed  Google Scholar 

  34. Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol. 2005;67(3):766–74.

    Article  CAS  PubMed  Google Scholar 

  35. Kirchner S, Kieu T, Chow C, Casey S, Blumberg B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol. 2010;24(3):526–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin L, Yu KS, Lu K, Yu X. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: a high content Cellomics and metabolomic analysis. Toxicol In Vitro. 2016;32:297–309.

    Article  CAS  PubMed  Google Scholar 

  37. Feige JN, Gelman L, Rossi D, Zoete V, Metivier R, Tudor C, et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem. 2007;282(26):19152–66.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Ycaza J, Blumberg B. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes. J Steroid Biochem Mol Biol. 2011;127(1–2):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, et al. Effects of parabens on adipocyte differentiation. Toxicol Sci. 2013;131(1):56–70.

    Article  CAS  PubMed  Google Scholar 

  40. Grun F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147(6 Suppl):S50–5.

    Article  CAS  PubMed  Google Scholar 

  41. Basaria S. Male hypogonadism. Lancet. 2014;383(9924):1250–63.

    Article  CAS  PubMed  Google Scholar 

  42. Laaksonen DE, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen TP, Salonen R, et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol. 2003;149(6):601–8.

    Article  CAS  PubMed  Google Scholar 

  43. Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab. 2004;89(11):5462–8.

    Article  CAS  PubMed  Google Scholar 

  44. Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metab. 1994;79(4):997–1000.

    CAS  PubMed  Google Scholar 

  45. Vermeulen A, Kaufman JM, Deslypere JP, Thomas G. Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J Clin Endocrinol Metab. 1993;76(5):1140–6.

    CAS  PubMed  Google Scholar 

  46. Saboor Aftab SA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol. 2013;78(3):330–7.

    Article  CAS  Google Scholar 

  47. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol. 2005;63(3):280–93.

    Article  CAS  Google Scholar 

  48. Jin P, Wang X, Chang F, Bai Y, Li Y, Zhou R, et al. Low dose bisphenol a impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J Biomed Res. 2013;27(2):135–44.

    CAS  PubMed  Google Scholar 

  49. Nakamura D, Yanagiba Y, Duan Z, Ito Y, Okamura A, Asaeda N, et al. Bisphenol a may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol Lett. 2010;194(1–2):16–25.

    Article  CAS  PubMed  Google Scholar 

  50. El-Beshbishy HA, Aly HA, El-Shafey M. Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats. Toxicol Ind Health. 2013;29(10):875–87.

    Article  CAS  PubMed  Google Scholar 

  51. Biegel LB, Liu RC, Hurtt ME, Cook JC. Effects of ammonium perfluorooctanoate on Leydig cell function: in vitro, in vivo, and ex vivo studies. Toxicol Appl Pharmacol. 1995;134(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  52. Harada Y, Tanaka N, Ichikawa M, Kamijo Y, Sugiyama E, Gonzalez FJ, et al. PPARalpha-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Arch Toxicol. 2016;90(12):3061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caprio M, Fabbrini E, Isidori AM, Aversa A, Fabbri A. Leptin in reproduction. Trends Endocrinol Metab. 2001;12(2):65–72.

    Article  CAS  PubMed  Google Scholar 

  54. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.

    Article  CAS  PubMed  Google Scholar 

  55. Tong Q, Xu Y. Central leptin regulation of obesity and fertility. Curr Obes Rep. 2012;1(4):236–44.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mammi C, Calanchini M, Antelmi A, Cinti F, Rosano GM, Lenzi A, et al. Androgens and adipose tissue in males: a complex and reciprocal interplay. Int J Endocrinol. 2012;2012:789653.

    Article  PubMed  Google Scholar 

  57. Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94(10):2075–81.

    Article  CAS  PubMed  Google Scholar 

  58. Hickey MS, Israel RG, Gardiner SN, Considine RV, McCammon MR, Tyndall GL, et al. Gender differences in serum leptin levels in humans. Biochem Mol Med. 1996;59(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  59. Hill JW, Elmquist JK, Elias CF. Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab. 2008;294(5):E827–32.

    Article  CAS  PubMed  Google Scholar 

  60. Gnessi L, Fabbri A, Spera G. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocr Rev. 1997;18(4):541–609.

    CAS  PubMed  Google Scholar 

  61. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Expression of leptin and leptin receptor in the testis of fertile and infertile patients. Andrologia. 2007;39(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  62. Glander HJ, Lammert A, Paasch U, Glasow A, Kratzsch J. Leptin exists in tubuli seminiferi and in seminal plasma. Andrologia. 2002;34(4):227–33.

    Article  CAS  PubMed  Google Scholar 

  63. Li HW, Chiu PC, Cheung MP, Yeung WS, W.S. O. Effect of leptin on motility, capacitation and acrosome reaction of human spermatozoa. Int J Androl. 2009;32(6):687–94.

    Article  CAS  PubMed  Google Scholar 

  64. Lampiao F, du Plessis SS. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian J Androl. 2008;10(5):799–807.

    Article  CAS  PubMed  Google Scholar 

  65. Guo J, Zhao Y, Huang W, Hu W, Gu J, Chen C, et al. Sperm motility inversely correlates with seminal leptin levels in idiopathic asthenozoospermia. Int J Clin Exp Med. 2014;7(10):3550–5.

    PubMed  PubMed Central  Google Scholar 

  66. Munzberg H, Myers MG Jr. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8(5):566–70.

    Article  PubMed  CAS  Google Scholar 

  67. Jensen TK, Andersson AM, Jorgensen N, Andersen AG, Carlsen E, Petersen JH, et al. Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertil Steril. 2004;82(4):863–70.

    Article  CAS  PubMed  Google Scholar 

  68. Hammoud AO, Wilde N, Gibson M, Parks A, Carrell DT, Meikle AW. Male obesity and alteration in sperm parameters. Fertil Steril. 2008;90(6):2222–5.

    Article  PubMed  Google Scholar 

  69. Hofny ER, Ali ME, Abdel-Hafez HZ, Kamal Eel D, Mohamed EE, Abd El-Azeem HG, et al. Semen parameters and hormonal profile in obese fertile and infertile males. Fertil Steril. 2010;94(2):581–4.

    Article  CAS  PubMed  Google Scholar 

  70. Paasch U, Grunewald S, Kratzsch J, Glander HJ. Obesity and age affect male fertility potential. Fertil Steril. 2010;94(7):2898–901.

    Article  PubMed  Google Scholar 

  71. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7(3):153–61.

    Article  PubMed  Google Scholar 

  72. Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol. 2009;304(1–2):49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zuo Z, Chen S, Wu T, Zhang J, Su Y, Chen Y, et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol. 2011;26(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  75. D’Cruz SC, Jubendradass R, Jayakanthan M, Rani SJ, Mathur PP. Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study. Food Chem Toxicol. 2012;50(3–4):1124–33.

    Article  PubMed  CAS  Google Scholar 

  76. D’Cruz SC, Jubendradass R, Mathur PP. Bisphenol A induces oxidative stress and decreases levels of insulin receptor substrate 2 and glucose transporter 8 in rat testis. Reprod Sci. 2012;19(2):163–72.

    Article  PubMed  CAS  Google Scholar 

  77. Dias TR, Rato L, Martins AD, Simoes VL, Jesus TT, Alves MG, et al. Insulin deprivation decreases caspase-dependent apoptotic signaling in cultured rat sertoli cells. ISRN Urol. 2013;2013:970370.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Galardo MN, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB. The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol. 2007;39(4):279–88.

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y, Zuo Z, Chen S, Yan F, Chen Y, Yang Z, et al. Reduction of spermatogenesis in mice after tributyltin administration. Toxicology. 2008;251(1–3):21–7.

    Article  CAS  PubMed  Google Scholar 

  80. Yu WJ, Lee BJ, Nam SY, Kim YC, Lee YS, Yun YW. Spermatogenetic disorders in adult rats exposed to tributyltin chloride during puberty. J Vet Med Sci. 2003;65(12):1331–5.

    Article  CAS  PubMed  Google Scholar 

  81. Yu WJ, Nam SY, Kim YC, Lee BJ, Yun YW. Effects of tributyltin chloride on the reproductive system in pubertal male rats. J Vet Sci. 2003;4(1):29–34.

    Article  PubMed  Google Scholar 

  82. Wisniewski P, Romano RM, Kizys MM, Oliveira KC, Kasamatsu T, Giannocco G, et al. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicology. 2015;329:1–9.

    Article  CAS  PubMed  Google Scholar 

  83. Rahman MS, Kwon WS, Lee JS, Yoon SJ, Ryu BY, Pang MG. Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci Rep. 2015;5:9169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Goldstone AE, Chen Z, Perry MJ, Kannan K, Louis GM. Urinary bisphenol A and semen quality, the LIFE study. Reprod Toxicol. 2015;51:7–13.

    Article  CAS  PubMed  Google Scholar 

  85. Adoamnei E, Mendiola J, Vela-Soria F, Fernandez MF, Olea N, Jorgensen N, et al. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environ Res. 2018;161:122–8.

    Article  CAS  PubMed  Google Scholar 

  86. Hu W, Dong T, Wang L, Guan Q, Song L, Chen D, et al. Obesity aggravates toxic effect of BPA on spermatogenesis. Environ Int. 2017;105:56–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Colao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pivonello, C., de Angelis, C., Garifalos, F., Pivonello, R., Colao, A. (2020). Environmental Factors’ Interference in Endocrine Aspects of Male Reproduction. In: Teperino, R. (eds) Beyond Our Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-35213-4_3

Download citation

Publish with us

Policies and ethics