Skip to main content

Circadian Rhythms in Health and Disease

  • Chapter
  • First Online:
  • 859 Accesses

Abstract

Intrinsic body clocks evolved in almost all organisms, ranging from fungi, bacteria, plants, to animals including humans. Circadian (24-h) clocks time the organism’s behavior and physiology in accordance with their environmental 24-h day. This autonomous circadian timing system allows the pre-adjustment to recurring environmental changes e.g. food availability, the presence of predators, and thereby enhances the chances of survival. Additionally, counteractive processes, such as anabolism and catabolism can be separated in time, which enhances the efficiency of the organism.

With the discovery of artificial light, the possibility to travel between time zones by airplanes, and modern food industry, people especially from the Western society no longer live in accordance with their environment. Consequently, living in a modern world is accompanied with a mismatch of the intrinsic clock time with the environmental daytime, such as occurs in shift workers or during jetlag. This misalignment has been associated with several dramatic health problems, including inflammatory diseases, metabolic syndrome and even cancer, indicating the strong link between the circadian system and overall health. In this chapter we introduce the importance of a balanced relationship between the circadian system and its environment during health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Edery I. Circadian rhythms in a nutshell. Physiol Genomics. 2000;3(2):59–74. https://doi.org/10.1152/physiolgenomics.2000.3.2.59.

    Article  CAS  PubMed  Google Scholar 

  2. Devlin PF, Kay SA. Circadian photoperception. Annu Rev Physiol. 2001;63:677–94. https://doi.org/10.1146/annurev.physiol.63.1.677.

    Article  CAS  PubMed  Google Scholar 

  3. Perez-Roger I, Solomon DL, Sewing A, Land H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene. 1997;14(20):2373–81.

    Article  CAS  PubMed  Google Scholar 

  4. Ma P, Woelfle MA, Johnson CH. An evolutionary fitness enhancement conferred by the circadian system in cyanobacteria. Chaos, solitons, and fractals. 2013;50:65–74. https://doi.org/10.1016/j.chaos.2012.11.006.

    Article  PubMed  Google Scholar 

  5. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42(1):201–6.

    Article  CAS  PubMed  Google Scholar 

  6. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69(6):1583–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sollars PJ, Kimble DP, Pickard GE. Restoration of circadian behavior by anterior hypothalamic heterografts. J Neurosci. 1995;15(3 Pt 2):2109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307–20.

    Article  CAS  PubMed  Google Scholar 

  10. Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell. 2002;111(7):919–22.. S0092867402012254 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417(6884):78–83. https://doi.org/10.1038/nature744.

    Article  CAS  PubMed  Google Scholar 

  12. Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 2003;13(8):664–668. .doi:S0960982203002227 [pii].

    Google Scholar 

  13. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62. https://doi.org/10.1146/annurev-neuro-060909-153128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.

    Article  CAS  PubMed  Google Scholar 

  15. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93(6):929–37.. S0092-8674(00)81199-X [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46. https://doi.org/10.1073/pnas.03087091010308709101.. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14(4):697–706.

    Article  CAS  PubMed  Google Scholar 

  18. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A. 2009;106(50):21407–12. https://doi.org/10.1073/pnas.0906361106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. https://doi.org/10.1038/nrg.2016.150.

    Article  CAS  PubMed  Google Scholar 

  20. Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science. 2012;337(6091):189–94. https://doi.org/10.1126/science.1222804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guillaumond F, Dardente H, Giguere V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythm. 2005;20(5):391–403. https://doi.org/10.1177/0748730405277232.

    Article  CAS  Google Scholar 

  22. Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell. 2011;144(2):268–81. https://doi.org/10.1016/j.cell.2010.12.019.

    Article  CAS  PubMed  Google Scholar 

  23. Hastings MH. Circadian clockwork: two loops are better than one. Nat Rev Neurosci. 2000;1(2):143–6. https://doi.org/10.1038/35039080.

    Article  CAS  PubMed  Google Scholar 

  24. Preussner M, Heyd F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Archiv: European journal of physiology. 2016;468(6):983–91. https://doi.org/10.1007/s00424-016-1820-y.

    Article  CAS  PubMed  Google Scholar 

  25. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246–60. https://doi.org/10.1016/j.neuron.2012.04.006.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24. https://doi.org/10.1073/pnas.1408886111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5(4):e1000442. https://doi.org/10.1371/journal.pgen.1000442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panda S, Hogenesch JB. It’s all in the timing: many clocks, many outputs. J Biol Rhythm. 2004;19(5):374–87. https://doi.org/10.1177/0748730404269008.

    Article  CAS  Google Scholar 

  29. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54. https://doi.org/10.1126/science.1195027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–7. https://doi.org/10.1073/pnas.0806717105.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–73. https://doi.org/10.1016/j.cmet.2006.07.002.

    Article  CAS  PubMed  Google Scholar 

  32. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007;130(4):730–41. https://doi.org/10.1016/j.cell.2007.06.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 2011;54(1):120–4. https://doi.org/10.1007/s00125-010-1920-8.

    Article  CAS  PubMed  Google Scholar 

  34. Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120(7):2600–9. https://doi.org/10.1172/JCI41192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N. Circadian variation of the response of T cells to antigen. J Immunol. 2011;187(12):6291–300. https://doi.org/10.4049/jimmunol.1004030.

    Article  CAS  PubMed  Google Scholar 

  36. Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, et al. Circadian clocks in mouse and human CD4+ T cells. PLoS One. 2011;6(12):e29801. https://doi.org/10.1371/journal.pone.0029801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daan S, Pittendrigh C. A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol. 1976;106(3):253–66. https://doi.org/10.1007/bf01417857.

    Article  Google Scholar 

  38. Aschoff J, Pohl H. Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften. 1978;65(2):80–4.

    Article  CAS  PubMed  Google Scholar 

  39. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol. 1972;146(1):1–14. https://doi.org/10.1002/cne.901460102.

    Article  CAS  PubMed  Google Scholar 

  40. Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci. 2004;21(4):359–68.

    Article  Google Scholar 

  41. Xia Z, Dudek H, Miranti CK, Greenberg ME. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci. 1996;16(17):5425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Antle MC, Silver R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 2005;28(3):145–51. https://doi.org/10.1016/j.tins.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  43. Schibler U, Ripperger J, Brown SA. Peripheral circadian oscillators in mammals: time and food. J Biol Rhythm. 2003;18(3):250–60.

    Article  Google Scholar 

  44. Kalsbeek A, Perreau-Lenz S, Buijs RM. A network of (autonomic) clock outputs. Chronobiol Int. 2006;23(3):521–35. https://doi.org/10.1080/07420520600651073.

    Article  CAS  PubMed  Google Scholar 

  45. Husse J, Zhou X, Shostak A, Oster H, Eichele G. Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN. J Biol Rhythm. 2011;26(5):379–89. https://doi.org/10.1177/0748730411415363.

    Article  CAS  Google Scholar 

  46. Niijima A, Nagai K, Nagai N, Nakagawa H. Light enhances sympathetic and suppresses vagal outflows and lesions including the suprachiasmatic nucleus eliminate these changes in rats. J Auton Nerv Syst. 1992;40(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  47. Mutoh T, Shibata S, Korf HW, Okamura H. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J Physiol 2003;547(Pt 1):317–332. doi:https://doi.org/10.1113/jphysiol.2002.028001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell metabolism. 2005;2(5):297–307. doi:S1550–4131(05)00269-X [pii]. https://doi.org/10.1016/j.cmet.2005.09.009.

    Article  CAS  PubMed  Google Scholar 

  49. Kiessling S, Sollars PJ, Pickard GE. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS One. 2014;9(3):e92959. https://doi.org/10.1371/journal.pone.0092959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344–7.. doi:8856[pii]

    Article  CAS  PubMed  Google Scholar 

  51. Pezuk P, Mohawk JA, Wang LA, Menaker M. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology. 2012;153(10):4775–83. https://doi.org/10.1210/en.2012-1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935–41. https://doi.org/10.1038/nature00965.

    Article  CAS  PubMed  Google Scholar 

  53. Reddy AB, Field MD, Maywood ES, Hastings MH. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci. 2002;22(17):7326–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parent-Thirion A, Fernández Macías E, Hurley J, Vermeylen G. Fourth European Working Conditions Survey. 2007.

    Google Scholar 

  55. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2012;17(4):273–84. https://doi.org/10.1016/j.smrv.2012.08.003.

    Article  PubMed  Google Scholar 

  56. Bechtold DA, Gibbs JE, Loudon AS. Circadian dysfunction in disease. Trends Pharmacol Sci. 2010;31(5):191–8. https://doi.org/10.1016/j.tips.2010.01.002.

    Article  CAS  PubMed  Google Scholar 

  57. Thomas C, Power C. Shift work and risk factors for cardiovascular disease: a study at age 45 years in the 1958 British birth cohort. Eur J Epidemiol. 2010;25(5):305–14. https://doi.org/10.1007/s10654-010-9438-4.

    Article  PubMed  Google Scholar 

  58. Karlsson B, Knutsson A. Lindahl B. is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med. 2001;58(11):747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Selvi Y, Gulec M, Agargun MY, Besiroglu L. Mood changes after sleep deprivation in morningness-eveningness chronotypes in healthy individuals. J Sleep Res. 2007;16(3):241–4. https://doi.org/10.1111/j.1365-2869.2007.00596.x.

    Article  PubMed  Google Scholar 

  60. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;8(12):e1001141. https://doi.org/10.1371/journal.pmed.1001141.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377. https://doi.org/10.1371/journal.pbio.0020377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science. 2005;308(5724):1043–5. https://doi.org/10.1126/science.1108750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18(12):1768–77. https://doi.org/10.1038/nm.2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, et al. Circadian homeostasis of liver metabolism suppresses Hepatocarcinogenesis. Cancer Cell. 2016;30(6):909–24. https://doi.org/10.1016/j.ccell.2016.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L. Circadian dysfunction induces Leptin resistance in mice. Cell Metab. 2015;22(3):448–59. https://doi.org/10.1016/j.cmet.2015.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2013;62(4):1102–8. https://doi.org/10.2337/db12-0507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Polidarova L, Sladek M, Sotak M, Pacha J, Sumova A. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int. 2011;28(3):204–15. https://doi.org/10.3109/07420528.2010.548615.

    Article  CAS  PubMed  Google Scholar 

  68. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107(43):18664–9. https://doi.org/10.1073/pnas.1008734107.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mendoza J, Pevet P, Challet E. High-fat feeding alters the clock synchronization to light. J Physiol. 2008;586(Pt 24):5901–5910. doi:jphysiol.2008.159566 [pii]https://doi.org/10.1113/jphysiol.2008.159566.

  71. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell metabolism. 2007;6(5):414–21. doi:S1550–4131(07)00266–5 [pii]. https://doi.org/10.1016/j.cmet.2007.09.006.

    Article  CAS  PubMed  Google Scholar 

  72. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102(12):4143–5. https://doi.org/10.1182/blood-2003-03-0779.

    Article  CAS  PubMed  Google Scholar 

  73. Cermakian N, Westfall S, Kiessling S. Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch Immunol Ther Exp. 2014;62:303–18. https://doi.org/10.1007/s00005-014-0286-x.

    Article  CAS  Google Scholar 

  74. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341(6153):1483–8. https://doi.org/10.1126/science.1240636.

    Article  CAS  PubMed  Google Scholar 

  75. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13(3):190–8. https://doi.org/10.1038/nri3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kiessling S, Dubeau-Laramee G, Ohm H, Labrecque N, Olivier M, Cermakian N. The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci Rep. 2017;7(1):10892. https://doi.org/10.1038/s41598-017-11297-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C, Zeller M, et al. Circadian clock regulates the host response to Salmonella. Proc Natl Acad Sci U S A. 2013;110(24):9897–902. https://doi.org/10.1073/pnas.1120636110.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Turner-Warwick M. Epidemiology of nocturnal asthma. Am J Med. 1988;85(1B):6–8.

    Article  CAS  PubMed  Google Scholar 

  79. Sam S, Corbridge TC, Mokhlesi B, Comellas AP, Molitch ME. Cortisol levels and mortality in severe sepsis. Clin Endocrinol. 2004;60(1):29–35.

    Article  CAS  Google Scholar 

  80. Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 2014;20(8):919–26. https://doi.org/10.1038/nm.3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796–805. https://doi.org/10.4049/jimmunol.1001026.

    Article  CAS  PubMed  Google Scholar 

  82. Cuesta M, Cermakian N, Boivin DB. Glucocorticoids entrain molecular clock components in human peripheral cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2015;29(4):1360–70. https://doi.org/10.1096/fj.14-265686.

    Article  CAS  Google Scholar 

  83. Boscolo P, Youinou P, Theoharides TC, Cerulli G, Conti P. Environmental and occupational stress and autoimmunity. Autoimmun Rev. 2008;7(4):340–3. https://doi.org/10.1016/j.autrev.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  84. Kumar CJ, Sharma VK, Kumar A. Jet lag and enhanced susceptibility to malaria. Med Hypotheses. 2006;66(3):671. https://doi.org/10.1016/j.mehy.2005.10.002.

    Article  PubMed  Google Scholar 

  85. Sandborn WJ. Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterology. 2008;135(5):1442–7. https://doi.org/10.1053/j.gastro.2008.09.053.

    Article  PubMed  Google Scholar 

  86. Swanson GR, Burgess HJ, Keshavarzian A. Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol. 2011;7(1):29–36. https://doi.org/10.1586/eci.10.83.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nojkov B, Rubenstein JH, Chey WD, Hoogerwerf WA. The impact of rotating shift work on the prevalence of irritable bowel syndrome in nurses. Am J Gastroenterol. 2010;105(4):842–7. https://doi.org/10.1038/ajg.2010.48.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53. https://doi.org/10.1038/nri3608.

    Article  CAS  PubMed  Google Scholar 

  89. Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, et al. Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One. 2013;8(6):e67102. https://doi.org/10.1371/journal.pone.0067102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pagel R, Bar F, Schroder T, Sunderhauf A, Kunstner A, Ibrahim SM, et al. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2017;31(11):4707–19. https://doi.org/10.1096/fj.201700141RR.

    Article  CAS  Google Scholar 

  91. Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013;153(4):812–27. https://doi.org/10.1016/j.cell.2013.04.020.

    Article  CAS  PubMed  Google Scholar 

  92. Cario E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol. 2013;29(1):85–91. https://doi.org/10.1097/MOG.0b013e32835a670e.

    Article  CAS  PubMed  Google Scholar 

  93. Coleman OI, Haller D. Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Front Immunol. 2017;8:1927. https://doi.org/10.3389/fimmu.2017.01927.

    Article  CAS  PubMed  Google Scholar 

  94. Froy O, Chapnik N, Miskin R. Mouse intestinal cryptdins exhibit circadian oscillation. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2005;19(13):1920–2. https://doi.org/10.1096/fj.05-4216fje.

    Article  CAS  Google Scholar 

  95. Larsen KR, Moore JG, Dayton MT. Circadian rhythms of gastric mucus efflux and residual mucus gel in the fasting rat stomach. Dig Dis Sci. 1991;36(11):1550–5.

    Article  CAS  PubMed  Google Scholar 

  96. Born J, Lange T, Hansen K, Molle M, Fehm HL. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol. 1997;158(9):4454–64.

    CAS  PubMed  Google Scholar 

  97. Rosselot AE, Hong CI, Moore SR. Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections. Curr Opin Gastroenterol. 2016;32(1):7–11. https://doi.org/10.1097/MOG.0000000000000227.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29. https://doi.org/10.1016/j.cell.2014.09.048.

    Article  CAS  PubMed  Google Scholar 

  99. Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, et al. The circadian clock mutation promotes intestinal Dysbiosis. Alcohol Clin Exp Res. 2016;40(2):335–47. https://doi.org/10.1111/acer.12943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oh-Oka K, Kono H, Ishimaru K, Miyake K, Kubota T, Ogawa H, et al. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis. PLoS One. 2014;9(5):e98016. https://doi.org/10.1371/journal.pone.0098016.

    Article  CAS  PubMed Central  Google Scholar 

  101. Hoogerwerf WA, Hellmich HL, Cornelissen G, Halberg F, Shahinian VB, Bostwick J, et al. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology. 2007;133(4):1250–60. https://doi.org/10.1053/j.gastro.2007.07.009.

    Article  CAS  PubMed  Google Scholar 

  102. Preuss F, Tang Y, Laposky AD, Arble D, Keshavarzian A, Turek FW. Adverse effects of chronic circadian desynchronization in animals in a "challenging" environment. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R2034–40. https://doi.org/10.1152/ajpregu.00118.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, et al. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342(6159):727–30. https://doi.org/10.1126/science.1243884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20(6):1006–17. https://doi.org/10.1016/j.cmet.2014.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alcock J, Maley CC. Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays: news and reviews in molecular, cellular and Dev Biol. 2014;36(10):940–9. https://doi.org/10.1002/bies.201400071.

    Article  Google Scholar 

  106. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9. https://doi.org/10.1016/j.chom.2015.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8(12):1065–6.

    Article  PubMed  Google Scholar 

  108. Lie JA, Kjuus H, Zienolddiny S, Haugen A, Stevens RG, Kjaerheim K. Night work and breast cancer risk among Norwegian nurses: assessment by different exposure metrics. Am J Epidemiol. 2011;173(11):1272–9. https://doi.org/10.1093/aje/kwr014.

    Article  PubMed  Google Scholar 

  109. Lahti TA, Partonen T, Kyyronen P, Kauppinen T, Pukkala E. Night-time work predisposes to non-Hodgkin lymphoma. Int j cancer J int cancer. 2008;123(9):2148–51. https://doi.org/10.1002/ijc.23566.

    Article  CAS  PubMed  Google Scholar 

  110. Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, et al. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012;188(6):2583–91. https://doi.org/10.4049/jimmunol.1102715.

    Article  CAS  PubMed  Google Scholar 

  111. Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Grechez-Cassiau A, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004;64(21):7879–85. https://doi.org/10.1158/0008-5472.CAN-04-0674.

    Article  CAS  PubMed  Google Scholar 

  112. Masri S, Cervantes M, Sassone-Corsi P. The circadian clock and cell cycle: interconnected biological circuits. Curr Opin Cell Biol. 2013;25(6):730–4. https://doi.org/10.1016/j.ceb.2013.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324–31. https://doi.org/10.1016/j.cmet.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010;50:377–421. https://doi.org/10.1146/annurev.pharmtox.48.113006.094626.

    Article  CAS  PubMed  Google Scholar 

  115. Kiessling S, Cermakian N. Clock genes and Cancer. In: Kumar V, editor. Biological timekeeping: clocks, rhythms and behaviour. New Delhi: Springer India; 2017. p. 481–500.

    Chapter  Google Scholar 

  116. Kiessling S, Beaulieu-Laroche L, Blum ID, Landgraf D, Welsh DK, Storch KF, et al. Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol. 2017;15(1):13. https://doi.org/10.1186/s12915-017-0349-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  118. Puppa MJ, White JP, Sato S, Cairns M, Baynes JW, Carson JA. Gut barrier dysfunction in the Apc(min/+) mouse model of colon cancer cachexia. Biochim Biophys Acta. 2011;1812(12):1601–6. https://doi.org/10.1016/j.bbadis.2011.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Coleman OI, Nunes T. Role of the microbiota in colorectal Cancer: updates on microbial associations and therapeutic implications. BioResearch open access. 2016;5(1):279–88. https://doi.org/10.1089/biores.2016.0028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Kiessling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiessling, S. (2020). Circadian Rhythms in Health and Disease. In: Teperino, R. (eds) Beyond Our Genes. Springer, Cham. https://doi.org/10.1007/978-3-030-35213-4_2

Download citation

Publish with us

Policies and ethics