Skip to main content

A Geometrically Constrained Manifold Embedding for an Extrinsic Gaussian Process

  • Chapter
  • First Online:
Recent Advances in Mathematics and Technology

Abstract

We introduce a new framework of local and adaptive manifold embedding for Gaussian regression. The proposed method, which can be generalized on any bounded domain in \(\mathbb {R}^n\), is used to construct a smooth vector field from line integral on curves. We prove that optimizing the local shapes from data set leads to a good representation of the generator of a continuous Markov process, which converges in the limit of large data. We explicitly show that the properties of the operator with respect to a geometry are influenced by the constraints and the properties of the covariance function. In this way, we make use of Markov fields to solve a registration problem and place them in a geometric framework. Finally, this locally adaptive embedding can be used with the help of the linear operator to construct conformal mappings or even global diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kendall, D. G. (1984) Shape manifolds, Procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

    Article  MathSciNet  Google Scholar 

  2. Klassen, E and Srivastava, A and Mio, W. and Joshi, S.H. (2004) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:2, 372–383.

    Article  Google Scholar 

  3. A. Srivastava and E. Klassen and S. H. Joshi and I. H. Jermyn (2011) Shape Analysis of Elastic Curves in Euclidean Spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 33:7, 1415–1428.

    Article  Google Scholar 

  4. Joshi, S.H. and Klassen, E. and Srivastava, A. and Jermyn, I. (2007) A novel representation for Riemannian analysis of elastic curves in \(\mathbb {R}^n\). IEEE Computer Vision and Pattern Recognition (CVPR), Conference on, 1–7.

    Google Scholar 

  5. Joshi, S.H. and Klassen, E. and Srivastava, A. and Jermyn, I. (2007) Removing shape-preserving transformations in square-root elastic (SRE) framework for shape analysis of curves. EMMCVPR, 387–398.

    Google Scholar 

  6. Anuj Srivastava and Eric Klassen (2016) Functional and Shape Data Analysis. Springer, New York, NY.

    Book  Google Scholar 

  7. P. W. Michor and D. Mumford (2006) Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48.

    Article  MathSciNet  Google Scholar 

  8. E. Sharon and D. Mumford (2006) 2D-shape analysis using conformal mapping. International Journal on Computer Vision, 70:1, 55–75.

    Article  Google Scholar 

  9. M.I Miller and L. Younes (2002) Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41:1/2, 61–84.

    Article  Google Scholar 

  10. A. Sotiras and C. Davatzikos and N. Paragios (2013) Deformable Medical Image Registration: A survey. IEEE Transactions on Medical Imaging, 32:7, 1153–1190.

    Article  Google Scholar 

  11. S. Ying and Y. Wang and Z. Wen and Y. Lin (2016) Nonlinear 2D shape registration via thin-plate spline and Lie group representation. Neurocomputing, 195, 129–136.

    Article  Google Scholar 

  12. D. Zosso and X. Bresson and J.-P. Thiran (2011) Geodesic active fields–a geometric framework for image registration. IEEE Transactions on Image Processing, 20:5, 1300–1312.

    Article  MathSciNet  Google Scholar 

  13. U. Grenander and M. I. Miller (1998) Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, LVI:4, 617–694.

    Article  MathSciNet  Google Scholar 

  14. M. Deshmukh and U. Bhosle (2011) A survey of image registration. IJIP, 5, 245–269.

    Google Scholar 

  15. Fred L. Bookstein (1989) Principal warps: thin-plate splines and the decomposition of deformations. Trans. PAMI 11:6, 567–585.

    Article  Google Scholar 

  16. Bertil Matérn (1960) Spatial Variations. PhD Thesis, Stockholm University.

    Google Scholar 

  17. Grenander Ulf and Miller Michael (2007) Pattern Theory: From Representation to Inference. Oxford University Press, Inc.

    MATH  Google Scholar 

  18. A. Srivastava and E. Klassen and S.H. Joshi and I.H. Jermyn (2011) Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. on PAMI, 33:7, 1415–1428.

    Article  Google Scholar 

  19. M. Bozzini and M. Rossini and R. Schaback (2013) Generalized Whittle-Matérn and polyharmonic kernels. Advances in Computational Mathematics, 39:1, 129–141.

    Article  MathSciNet  Google Scholar 

  20. Tilmann Gneiting (2002) Compactly supported correlation functions. J. of Multivariate Analysis, 83, 493–508.

    Article  MathSciNet  Google Scholar 

  21. Stein Michael L. (1999) Interpolation of Spatial Data. Springer Series in Statistics.

    Book  Google Scholar 

  22. Adler R. J. and Taylor Jonathan E. (2007) Random Fields and Geometry. Springer Monographs in Mathematics.

    MATH  Google Scholar 

  23. T. Gneiting and W. Kleiber and M. Schlather (2009) Matérn Cross-Covariance Functions for Multivariate Random Fields. Department of Statistics, University of Washington, 549.

    Google Scholar 

  24. P.K. Kitanidis and R.W. Lane (1985) Maximum likelihood parameter estimation of hydrologic spacial processes by the Gauss-Newton method. Journal of Hydrology, 79, 53–71.

    Article  Google Scholar 

  25. C.R. Dietrich and G.N. Newsam (2006) A fast and exact method for multidimensional Gaussian stochastic simulations: Extension to realizations conditioned on direct and indirect measurements. Water Resources Research, 32:6, 1643–1652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chafik Samir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deregnaucourt, T., Samir, C., Elkhoumri, A., Laassiri, J., Fakhri, Y. (2020). A Geometrically Constrained Manifold Embedding for an Extrinsic Gaussian Process. In: Dos Santos, S., Maslouhi, M., Okoudjou, K. (eds) Recent Advances in Mathematics and Technology. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-35202-8_5

Download citation

Publish with us

Policies and ethics