Skip to main content

Silver Nanoparticles in Wound Infections: Present Status and Future Prospects

  • Chapter
  • First Online:
Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

The wounds are infected by one or more bacteria or other microbes. The occurrence of the bacterial infections in wounds is mainly responsible in delayed healing and enhancement of wound. These bacteria include Gram-positive bacteria such as Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Gram-negative bacteria including Pseudomonas aeruginosa, Escherichia coli, Klebsiella species, and fungi like Candida and Aspergillus. The use of silver has been known since nineteenth century and after the discovery of penicillin, its use was reduced. However, the occurrence of multidrug-resistant bacteria has led to the search of new antibiotics and alternatives to solve the problem of multidrug-resistance. In this context, scientists have shown much interest on the use of silver and silver nanoparticles as they are very effective against bacterial infections.

This chapter is aimed to discuss the role of silver and silver nanoparticles in wound infections. In addition, the resistance of microbes to silver and silver nanoparticles and the toxicity issues have also been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi M, Adibhesami M (2017) The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: an experimental study. Iran J Pharm Res 16(2):661–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alavi M, Rai M (2019) Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti-Infect Ther 17(6):419–428. https://doi.org/10.1080/14787210.2019.1614914

    Article  CAS  PubMed  Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of literature. Burns 33:139–148

    Article  PubMed  Google Scholar 

  • Ayton M (1985) Wound care: wounds that won’t heal. Nurs Times 81(46):16–19

    Google Scholar 

  • Barillo DJ, Marx DE (2014) Silver in medicine: a brief history BC 335 to present. Burns 40:3–8

    Article  Google Scholar 

  • Bawskar MS, Deshmukh SD, Bansod S, Gade AK, Rai MK (2015) Comparative analysis of biosynthesised and chemosynthesised silver nanoparticles with special reference to their antibacterial activity against pathogens. IET Nanobiotechnol 9(3):107–113

    Article  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179

    Article  CAS  PubMed  Google Scholar 

  • Bonde SR, Rathod DP, Ingle AP, Ade RB, Gade AK, Rai MK (2012) Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci Methods 1:25–36

    Article  CAS  Google Scholar 

  • Bowler PG (1998) The anaerobic and aerobic microbiology of wounds: A review. Wounds 10(6):170–178

    Google Scholar 

  • Bowler P, Duerden B, Armstrong D (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian gemline stem cells. Toxicol Sci 88(2):412–419

    Article  CAS  PubMed  Google Scholar 

  • Bridges K, Kidson A, Lowbury EJ et al (1979) Gentamicin—and silver—resistant Pseudomonas in a burns unit. Br Med J 1:446–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L (2007) A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 15:94–104

    Article  PubMed  Google Scholar 

  • Burrell RE (2003) A scientific perspective on the use of topical silver preparations. Ostomy Wound Manage 49(Suppl. 5A):19–24

    PubMed  Google Scholar 

  • Calvin M (1998) Cutaneous wound repair. Wounds 10(1):12–32

    Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  CAS  PubMed  Google Scholar 

  • Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr (1988) Therapeutic effects of silver nylon dressings with weak current on Pseudomonas aeruginosa—infected burn wounds. J Trauma 28:1488–1492

    Article  CAS  PubMed  Google Scholar 

  • Chu CS, McManus AT, Okerberg CV, Mason AD Jr, Pruitt BA Jr (1991) Weak direct current accelerates split-thickness graft healing on tangentially excised second degree burns. J Burn Care Rehabil 12:285–293

    Article  CAS  PubMed  Google Scholar 

  • Chu CS, Matylevich NP, McManus AT, Masson AD Jr, Pruitt BA Jr (1996) Direct current reduces wound edema after full thickness burn injury in rats. J Trauma 40(5):738–742

    Article  CAS  PubMed  Google Scholar 

  • Collier M (2004) Recognition and management of wound infection. J World Wide Wounds

    Google Scholar 

  • Dunn K, Edwards-Jones V (2004) The role of Acticoat with nanocrystalline silver in the management of burns. Burns 30:1–9

    Article  Google Scholar 

  • Fakhry SM, Alexander J, Smith D, Meyer AA, Petterson HD (1995) Regional and institutional variation in burn care. J Burn Care Rehabil 16:86–90

    Article  CAS  PubMed  Google Scholar 

  • Falanga V, Grinnell F, Gilchrest B, Maddox YT, Moshell A (1994) Workshop on the pathogenesis of chronic wounds. J Invest Dermatol 102(1):125–127

    Article  CAS  PubMed  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Fong J, Wood F, Fowler BA (2005) A silver coated dressing reduces the incidence of early burn wound cellulitis and associated costs of inpatient treatment: comparative patient care audits. Burns 31(5):562–567

    Article  CAS  PubMed  Google Scholar 

  • Fox CL (1968) Silver sulfadiazine—a new topical agent. Arch Surg 96:184–188

    Article  PubMed  Google Scholar 

  • Fox CL, Stanford JW (1971) Anti-bacterial action of silver sulphadiazine and DNA binding. In: Matter P, Barcaly TL, Konikova Z (eds) Research in burns. Huber, Bern, pp 133–138

    Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungal-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386

    Article  CAS  PubMed  Google Scholar 

  • Gamelli RL, Paxton TP, O’Reilly M (1993) Bone marrow toxicity by silver sulphadiazine. Surg Gynec Obstet 177:115–120

    CAS  PubMed  Google Scholar 

  • Jiang B, Larson JC, Drapala PW, Perez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res 100:668–676

    Article  CAS  Google Scholar 

  • Karkman A, Katariina P, Joakim Larsson DG (2019) Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun 0:80. https://doi.org/10.1038/s41467-018-07992-3

    Article  CAS  Google Scholar 

  • Kedi PBE, Meva FE, Kotsedi L, Nguemfo EL, Zangueu CB, Ntoumba AA, Mohamed HEA, Dongmo AB, Maaza M (2018) Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silvernanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine 12(13):8537–8548. https://doi.org/10.2147/IJN.S174530.

    Article  Google Scholar 

  • Kingsley A (2001) A proactive approach to wound infection. Nurs Stand 15(30):50–54, 56, 58

    Article  CAS  PubMed  Google Scholar 

  • Kirsner R, Orsted H, Wright B (2001) Matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystaline silver. Wounds 13:5–10

    Google Scholar 

  • Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. Part I early uses. Burns 30:1–9

    Google Scholar 

  • Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53:621–631

    Article  CAS  PubMed  Google Scholar 

  • Lansdown ABG (2006) Silver in health care: antimicrobial effects and safety in use. Cuur Probl Dermatol 33:17–34. In: Biofunctional Textiles and the Skin, Hipler U.C., Elsner P. (eds)

    Article  CAS  Google Scholar 

  • Lansdown ABG (2010) Silver in health and disease. Its antimicrobial efficacy and safety in use. Royal Society of Chemistry, London

    Google Scholar 

  • Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russel AD (1997) Interaction of silver-nitrate with readily identiflabe groups-relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lee P, Ch H, Lui V, Chen Y, Ch C, Tam P, Wong KY (2010) Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem 5(3):468–475

    Article  CAS  PubMed  Google Scholar 

  • McHugh GL, Moellering RC, Hopkins CC et al (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol and ampicillin. Lancet 1:235–240

    Article  CAS  PubMed  Google Scholar 

  • Mooney EK (2006) Silver dressings (safety and efficacy reports). Plast Reconstr Surg 117(2):666–669

    Article  CAS  PubMed  Google Scholar 

  • Moyer CA, Brentano L, Gravens DL, Margraf HW, Monafo WW (1965) Treatment of large human burns with 0.5% silver nitrate solution. Arch Surg 90:812–867

    Article  CAS  PubMed  Google Scholar 

  • Nadworny PL, Wang JF, Tredget EE, Burrell RE (2010) Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J Inflam 7:20

    Article  CAS  Google Scholar 

  • Nam G, Rangasamy S, Purushothaman B, Song JM (2015) The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotechnol 5:23

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon VKM, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147

    Article  PubMed  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical application, and toxicity effects. Int Nano Lett 2:32–42

    Article  Google Scholar 

  • Rai MK, Yadav AP, Gade AK (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: powerful nanoweapon against multidrug-resistant bacteria. Appl Microbiol 112:841–852

    Article  CAS  Google Scholar 

  • Robson MC (1997) Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin N Am 77:637–650

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Bera T, Poy A, Singh G, Ramachandrarao P, Dash D (2007) Characterisation of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim K, Rawat M, Samddar P, Kumar P (2018) Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Stanford W, Rappole BW, Fox Jr CL (1969) Clinical experience with silver sulfadiazine, a new topical agent for control of pseudomonas infection in burn patients. J Trauma 9(5):377–388

    Google Scholar 

  • Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM et al (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136

    Article  CAS  PubMed  Google Scholar 

  • Tredget EE, Shankowsky HA, Groeneveld A, Burrell R (1998) A matched – pair, randomized study evaluating the efficacy and safety of Acticoat silver – coated dressing for the treatment of burn wounds. J Burn Care Rehabil 19:531–537

    Article  CAS  Google Scholar 

  • Venkataraman M, Nagarsenker M (2013) Silver sulfadiazine nanosystems for burn therapy. AAPS PharmSciTech 14(1):254–264. https://doi.org/10.1208/s12249-012-9914-0

    Article  CAS  PubMed  Google Scholar 

  • Warriner R, Burrell R (2005) Infection and the chronic wound: a focus on silver. Adv Skin Wound Care 18(8):2–12

    Article  PubMed  Google Scholar 

  • Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Inf Control 27(4):344–350

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Lam K, Buret A, Olson M, Burrell R (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix matalloproteinases, cell apoptosis, and healing. Wound Repair Regeneration, 10:141

    Article  PubMed  Google Scholar 

  • Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang J, Zhang F, Qingping W, Zhang J, Pang R, Zeng H, Yang X, Chen M, Wang J, Dai J, Xue L, Lei T, Wei X (2019) Prevalence and characterization of food-related methicillin resistant Staphylococcus aureus (MRSA) in China. Front Microbiol 10:304. https://doi.org/10.3389/fmicb.2019.00304

    Article  PubMed  PubMed Central  Google Scholar 

  • Wypij M, Åšwiecimska M, Czarnecka J, Dahm H, Rai M, GoliÅ„ska P (2018) Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics. Appl Microbiol 124:1411–1424

    Article  CAS  Google Scholar 

  • Yin HQ, Langford R, Burrell RE (1999) Comparative evaluation of the antimicrobial activity of ACTICOAT antimicrobial barrier dressing. J Burn Care Rehabil 20:195–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Dahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahm, H. (2020). Silver Nanoparticles in Wound Infections: Present Status and Future Prospects. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_9

Download citation

Publish with us

Policies and ethics