Skip to main content

Antifungal Nanotherapy: A Novel Approach to Combat Superficial Fungal Infections

  • Chapter
  • First Online:
Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

Superficial fungal infections (SFIs) affect up to 25% of population all over the world. Although dermatophytosis is the main SFIs with worldwide distribution, tinea versicolor caused by Malassezia species and Candida -related infections are also common. SFIs have diverse etiologic agents, which differ in pathogenesis and geographic distribution with increasing rate of resistant species to current antifungal therapy. Nowadays, the conventional antifungal therapy of SFIs using current antifungals of azoles, allylamines, and griseofulvin have some drawbacks like liver toxicity, skin problem, severe headaches and sometimes recurrences and drug–drug interactions especially in patients who are under drug treatment for other diseases. The problem is more complicated in immunocompromised patients who undergone systemic immunosuppressive therapies. On the other hand, low penetration of antifungal drugs in hard tissues of nail in onychomycoses caused by the dermatophytes and Candida species in local therapies and drug resistance in emerging causative species are considered as other important limitations of current antifungal therapy against SFIs. Novel formulations of antifungals or new devices that increase the chance of the delivery of the drug into the site of the infection seem necessary in order to enhance the drug efficiency. Recently, nanotechnology has contributed into this area and proposes great opportunities for more effective treatments of SFIs. In this chapter, we highlight current status of antifungal nanotherapy using advanced nanoformulations to combat SFIs and discuss in details their application in future medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLSI:

Clinical and Laboratory Standards Institute

CLSM:

Confocal Laser Scanning Microscopy

FBS:

Fetal Bovine Serum

IC80:

80% Inhibitory Concentration

MGYP:

Malt extract, Glucose, Yeast extract and Peptone

NPs:

Nanoparticles

PAN:

Polyacrylonitrile

PCL:

Polycaprolactone

PEG:

Poly Ethylene Glycol

PEO:

Poly(Ethylene Oxide)

PG:

Propylene Glycol

ROS:

Reactive Oxygen Species

SEM:

Scanning Electron Microscope

XRD:

X-ray diffraction

YPD:

Yeast extract/Peptone/Dextrose

References

  • Ahmad A, Wei Y, Syed F, Tahir K, Taj R, Khan A, Hameed M, Yuan Q (2016) Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog 99:271–281

    Article  CAS  PubMed  Google Scholar 

  • Ameen M (2010) Epidemiology of superficial fungal infections. Clin Dermatol 28:197–201

    Article  PubMed  Google Scholar 

  • Asghari-Paskiabi F, Jahanshiri Z, Imani M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2016) In: Grumezescu AM (ed) Antifungal nanomaterials: synthesis, properties, and applications. Nanobiomaterials in antimicrobial therapy, vol 6. Elsevier, Oxford, pp 343–383

    Google Scholar 

  • Asghari-Paskiabi F, Imani M, Razzaghi-Abyaneh M, Rafii-Tabar H (2018) Fusarium oxysporum, a bio-factory for nano selenium compounds: synthesis and characterization. Sci Iran 25:1857–1863

    Google Scholar 

  • Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Razzaghi-Abyaneh M (2019) Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem Biophys Res Commun 516:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Benson HAE (2006) Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 3:727–737

    Article  CAS  PubMed  Google Scholar 

  • Benson HAE (2009) Elastic liposomes for topical and transdermal drug delivery. Curr Drug Deliv 6:217–226

    Article  CAS  PubMed  Google Scholar 

  • Bhalaria MK, Naik S, Misra AN (2009) Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol 47:368–375

    CAS  PubMed  Google Scholar 

  • Blume A, Jansen M, Ghyczy M, Gareiss J (1993) Interaction of phospholipid liposomes with lipid model mixtures for stratum corneum lipids. Int J Pharm 99:219–228

    Article  Google Scholar 

  • Campani V, Biondi M, Laura M, Cilurzo F, FranzĂ© S, Pitaro M, De Rosa G (2016) Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res 33:893–908

    Article  CAS  PubMed  Google Scholar 

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta Biomembr 1104:226–232

    Article  CAS  Google Scholar 

  • Devi KP, Nisha SA, Sakthivel R, Pandian SK (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130:107–115

    Article  CAS  PubMed  Google Scholar 

  • Dias MFRG, Quaresma-Santos M, Bernardes-Filho F, Amorim AGF, Schechtman RC, Azulay DR (2013) Update on therapy for superficial mycoses: review article part I. An Bras Dermatol 88:764–774

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwin B, Kannan I, Aarthi R, Sukumar RG, Prevathi RK, Shantha S (2017) Study on anti-fungal activity of silver nanoparticles obtained from Lawsonia inermis against Candida albicans and dermatophytes. Int J Adv Res Med Sci 1:19–22

    Google Scholar 

  • Elmoslemany RM, Abdallah O, El-Khordagui LK, Khalafallah NM (2012) Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. AAPS Pharm Sci Tech 13:723–731

    Article  CAS  Google Scholar 

  • Elsherif NI, Shamma RN, Abdelbary G (2017) Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS Pharm Sci Tech 18:551–562

    Article  CAS  Google Scholar 

  • Gholami-Shabani MA, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098

    Article  CAS  PubMed  Google Scholar 

  • Gholami-Shabani M, Imani A, Shams-Ghahfarokhi M, Gholami-Shabani Z, Pazooki A, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016) Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J Iran Chem Soc 13:2059–2068

    Article  CAS  Google Scholar 

  • Hamishehkar H, Rahimpour Y, Kouhsoltani M (2013) Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 10:261–272

    Article  CAS  PubMed  Google Scholar 

  • Hartsel S, Bolard J (1996) Amphotericin B: new life for an old drug. Trends Pharmacol Sci 17:445–449

    Article  CAS  PubMed  Google Scholar 

  • Havlickova B, Czaika V, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15

    Article  PubMed  Google Scholar 

  • Hay R (2017) Superficial fungal infections. Medicine 45:707–710

    Article  Google Scholar 

  • Hussain A, Singh S, Sharma D, Webster T, Shafaat K, Faruk A (2017) Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine 12:5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi PA, Bonde SR, Gaikwad SC, Gade AK, Abd-Elsalam K, Rai MK (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and its efficacy against bacteria and Malassezia furfur. J Bionanosci 7:378–385

    Article  CAS  Google Scholar 

  • Kassem MAA, Esmat S, Bendas E, El-Komy M (2006) Efficacy of topical griseofulvin in treatment of tinea corporis. Mycoses 49:232–235

    Article  CAS  PubMed  Google Scholar 

  • Kaushik N, Pujalte G, Reese S (2015) Superficial fungal infections. Primary Care Clin Office Pract 42:501–516

    Article  Google Scholar 

  • Kim K-J, Sung W, Moon S, Choi J, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    CAS  PubMed  Google Scholar 

  • Kim K-J, Sung W, Suh BK, Moon S, Choi J-S, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Shukla S, Pandey A, Srivastava S, Dikshit A (2015) Copper oxide nanoparticles: an antidermatophytic agent for Trichophyton spp. Nanotechnol Rev 4:401–409

    CAS  Google Scholar 

  • Kumar L, Verma S, Singh K, Prasad DN, Jain AK (2016) Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. Nano World J 2:41–51

    CAS  Google Scholar 

  • Lee J, Kim KJ, Sung WS, Kim JG, Lee DG (2010) The silver nanoparticle (nano-Ag): a new model for antifungal agents. Silver nanoparticles. InTech, Rijeka

    Google Scholar 

  • Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, Cui D (2013) The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 34:3882–3890

    Article  CAS  PubMed  Google Scholar 

  • Marcato PD, Durán M, Huber SC, Rai M, Melo PS, Alves OL, Duran N (2012) Biogenic silver nanoparticles and its antifungal activity as a new topical transungual drug. J Nano Res 20:99–107

    Article  CAS  Google Scholar 

  • Mofidfar M, Wang J, Long L, Hager C, Vareechon C, Pearlman E, Eric B, Ghannoum M, Wnek GE (2017) Polymeric nanofiber/antifungal formulations using a novel co-extrusion approach. AAPS Pharm Sci Tech 18:1917–1924

    Article  CAS  Google Scholar 

  • Mousavi SAA, Salari S, Hadizadeh S (2015) Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum. Iran J Biotechnol 13:38–43

    Article  Google Scholar 

  • Niemirowicz K, Bonita D, Tokajuk G, GĹ‚uszek K, Wilczewska AZ, Misztalewska I, Mystkowska J, Michalak G, Sodo A, WÄ…tek M, Kiziewicz B, GóźdĹş S, GĹ‚uszek S, Bucki R (2016) Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomed Nanotechnol Biol Med 12:2395–2404

    Article  CAS  Google Scholar 

  • Ouf SA, Mohamed AAH, El-Adly AA (2017) Enhancement of the antidermatophytic activity of silver nanoparticles by Q-switched Nd: YAG laser and monoclonal antibody conjugation. Med Mycol 55:495–506

    CAS  PubMed  Google Scholar 

  • Pandit J, Garg M, Jain NK (2014) Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res 24:163–169

    Article  CAS  PubMed  Google Scholar 

  • Pannu J, McCarthy A, Martin A, Hamouda T, Ciotti S, Fothergill A, Sutcliffe J (2009) NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrob Agents Chemother 53:3273–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paskiabi FA, Bonakdar S, Shokrgozar MA, Imani M, Jahanshiri Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2017) Terbinafine-loaded wound dressing for chronic superficial fungal infections. Mater Sci Eng C 73:130–136

    Article  CAS  Google Scholar 

  • Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N (2014) Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 117:1601–1613

    Article  CAS  PubMed  Google Scholar 

  • Rathna GS, Elavarasi A, Peninal S, Subramanian J, Mano G, Kalaiselvam M (2013) Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activity. Int J Pharmaceut Biol Arch 4:481–487

    Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rai M (2015) Medical mycology: current trends and future prospects, 1st edn. CRC, Boca Raton, FL

    Book  Google Scholar 

  • RĂłnavári A, Igaz N, Gopisetty M, SzerencsĂ©s B, Kovács D, Papp C, Vágvölgyi C, Boros IM, KĂłnya Z, Kiricsi M, Pfeiffer I (2018) Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine 13:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghi G, Ebrahimi-Rad M, Mousavi SF, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2018) Emergence of non-Candida albicans species: Epidemiology, phylogeny and fluconazole susceptibility profile. J Mycol MĂ©d 28:51–58

    Article  CAS  PubMed  Google Scholar 

  • Salehi Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2018) Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolate. Eur J Clin Microbiol Infect Dis 37:1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RA (2004) Superficial fungal infections. Lancet 364:1173–1182

    Article  PubMed  Google Scholar 

  • Scorzoni L, de Paula e Silva AC, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:36–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Seebacher C, Bouchara J-P, Mignon B (2008) Updates on the epidemiology of dermatophyte infections. Mycopathologia 166:335–352

    Article  PubMed  Google Scholar 

  • Semnani K, Shams-Ghahfarokhi M, Afrashi M, Fakhrali A, Semnani D (2018) Antifungal activity of eugenol loaded electrospun pan nanofiber mats against Candida albicans. Curr Drug Deliv 15:860–866

    Article  CAS  PubMed  Google Scholar 

  • Son KH, Kwon SY, Kim HP, Chang HW, Kang SS (1998) Constituents from Syzygium aromaticum Merr. et Perry. Nat Prod Sci 4:263–267

    CAS  Google Scholar 

  • Song CK, Balakrishnan P, Shim C-K, Chung S-J, Chong S, Kim D-D (2012) A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 92:299–304

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar B, Ravi VJN, Ramana MKV (2014) Formulation, characterization and ex vivo studies of terbinafine hydrochloride liposomes for cutaneous delivery. Curr Drug Deliv 11:521–530

    Article  CAS  PubMed  Google Scholar 

  • Thakkar M (2016) Opportunities and challenges for niosomes as drug delivery systems. Curr Drug Deliv 13:1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Tiwari N, Pandit R, Gaikwad S, Aniket G, Rai M (2016) Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnol 11:205–211

    Article  PubMed Central  Google Scholar 

  • Vandeputte P, Ferrari S, Coste TA (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Pathak K (2012) Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomed Nanotechnol Biol Med 8:489–496

    Article  CAS  Google Scholar 

  • Verma S, Utreja P (2018) Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharmaceut Sci 4:1–13

    CAS  Google Scholar 

  • Wypij M, Czarnecka J, Dahm H, Rai M, Golinska P (2017) Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. J Basic Microbiol 57:793–800

    Article  CAS  PubMed  Google Scholar 

  • Zamani S, Sadeghi G, Yazdinia F, Moosa H, Pazooki A, Ghafarinia Z, Abbasi M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2016) Epidemiological trends of dermatophytosis in Tehran, Iran: a five-year retrospective study. J Mycol MĂ©d 26:351–358

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asghari-Paskiabi, F., Jahanshiri, Z., Shams-Ghahfarokhi, M., Razzaghi-Abyaneh, M. (2020). Antifungal Nanotherapy: A Novel Approach to Combat Superficial Fungal Infections. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_5

Download citation

Publish with us

Policies and ethics