Skip to main content

Combination Therapy Using Metal Nanoparticles for Skin Infections

  • Chapter
  • First Online:
Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

Nowadays skin infections have emerged as a serious health problem worldwide. Over the years research has been conducted to develop new therapeutic agents for the treatment and prevention of various skin infections. Frequent use of conventional antibiotics and drugs increases multi-drug resistance. Therefore, it requires a continuous need for newer and more effective therapies. Nanotechnology is the most promising and novel area in the field of medicine for safe and targeted drug delivery to combat various skin infections. Nanomaterials especially metallic nanoparticles are increasingly utilized in dermatology and cosmetology due to their unique properties such as small size, shape, and high surface-area-to-volume ratio. Metallic nanoparticles have the ability to interact with the cell membrane and cell wall of the pathogens and can easily penetrate into the skin. Therefore, metal-based nanoparticles can effectively combine with conventional drugs to develop successful combination therapies. The aim of this chapter is to describe the combination therapy of metallic nanoparticles for the treatment of various skin infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AuNPs:

Gold nanoparticles

BCCs:

Basal cell carcinomas

CFU:

Colony-forming unit

CL:

Cutaneous leishmaniasis

CuO NPs:

Copper oxide nanoparticles

EPR:

Permeability and retention effect

EPSD:

Epidermal parasitic skin diseases

HSV:

Herpes simplex virus

IDs:

Infectious diseases

MDR:

Multi-drug resistance

NMSC:

Non-melanocytic skin cancer

NPs:

Nanoparticles

NRs:

Nanorod

ROS:

Reactive oxygen species

SC:

Stratum corneum

SPIONs:

Superparamagnetic iron oxide nanoparticles

SSTIs:

Skin structure infections

TiO2:

Titanium dioxide

References

  • Abeylath SC, Turos E (2008) Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opin Drug Deliv 5:931–949

    Article  CAS  PubMed  Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:637858. https://doi.org/10.1155/2014/637858

    Article  CAS  Google Scholar 

  • Ahmad J, Dwivedi S, Alarifi S, Al-Khedhairy AA, Musarrat J (2012) Use of-galactosidase (lacZ) gene-complementation as a novel approach for assessment of titanium oxide nanoparticles induced mutagenesis. Mutat Res 747:246–252

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6:933–940

    Article  CAS  PubMed  Google Scholar 

  • Allaker RP, Ren G (2008) Potential impact of nanotechnology on the control of infectious disease. Trans R Soc Trop Med Hyg 102:1–2

    Article  PubMed  Google Scholar 

  • Anagnostakos K, Hitzler P, Pape D, Kohn D, Kelm J (2008) Persistence of bacterial growth on antibiotic-loaded beads—is it actually a problem? Acta Orthop 79:302–307

    Article  PubMed  Google Scholar 

  • Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla DP (2012) Therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res 96:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar MF, Yadav D, Jain S, Kapoor S, Rastogi S, Arora I, Samim M (2016) Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff. Int J Nanomedicine 6:147–161

    Google Scholar 

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337

    Article  CAS  PubMed  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram positive and -negative bacterial strains. Small 8:3326–3337

    Article  CAS  Google Scholar 

  • Azubel M, Koivisto J, Malola S, Bushnell D, Hura GL, Koh AL, Tsunoyama H, Tsukuda T, Pettersson M, Häkkinen H, Kornberg RD (2014) Electron microscopy of gold nanoparticles at atomic resolution. Science 345:909–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8):2034–2042

    Article  CAS  PubMed  Google Scholar 

  • Baram-Pinto D, Shukla S, Gedanken A, Sarid R (2010) Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 6:1044

    Article  CAS  PubMed  Google Scholar 

  • Bassetti M, Castaldo N, Carnelutti A, Peghin M, Giacobbe DR (2019) Tedizolid phosphate for the treatment of acute bacterial skin and skin-structure infections: an evidence-based review of its place in therapy. Core Evid 14:31–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Betts JW, Hornsey M, La Ragione RM (2018) Novel antibacterials: alternatives to traditional antibiotics. Adv Microb Physiol 73:123–169

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Samanta S, Mukherjee A, Santra CR, Ghosh AN, Neyogi SK, Karmakar P (2012) Antibacterial activities of poly ethylene glycol, tween 80 and sodium dodecyl sulphate coated silver nanoparticles in normal and multi-drug resistant bacteria. J Nano Sci Nanotechnol 12:1–9

    Article  CAS  Google Scholar 

  • Bhattacharya D, Santra CR, Ghosh AN, Karmakar P (2014) Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. J Biomed Nanotechnol 10:707–716

    Article  CAS  PubMed  Google Scholar 

  • Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S (2019) Phyto-mediated synthesis of zinc oxide nanoparticles of Berberisaristata: characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Korean J Couns Psychother 102:212–220

    CAS  Google Scholar 

  • Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6:170–174

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Clebak KT, Malone MA (2018) Skin infections. Prim Care 45:433–454

    Article  PubMed  Google Scholar 

  • Crissey JT (1998) Common dermatophyte infections. A simple diagnostic test and current management. Postgrad Med 103:191–202

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154

    Article  CAS  PubMed  Google Scholar 

  • Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B Biointerfaces 101:430–433

    Article  CAS  PubMed  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gohary M, van Zuuren EJ, Fedorowicz Z, Burgess H, Doney L, Stuart B, Moore M, Little P (2014) Topical antifungal treatments for tinea cruris and tinea corporis. Cochrane Database Syst Rev 4:CD009992. https://doi.org/10.1002/14651858.CD009992

    Article  Google Scholar 

  • Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    Article  CAS  PubMed  Google Scholar 

  • Feldmeier H, Heukelbach J (2009) Epidermal parasitic skin diseases: a neglected category of poverty-associated plagues. Bull World Health Organ 87(2):152–159

    Article  PubMed  Google Scholar 

  • Fredricks DN (2001) Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 6:167–169

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Zhang L (2015) Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target 23:619–626

    Article  CAS  PubMed  Google Scholar 

  • Gerrity D, Ryu H, Crittenden J, Abbaszadegan M (2008) Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J Environ Sci Health Pt A 43:1264–1270

    Google Scholar 

  • Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, Elimelech M, Pfefferle LD, Zimmerman JB (2016) Shape-dependent surface reactivity and antimicrobial activity of nano-cupricoxide. Environ Sci Technol 50:3975–3984

    Article  CAS  PubMed  Google Scholar 

  • Gomes BP, Montagner F, Berber VB, Zaia AA, Ferraz CC, de Almeida JF, Souza-Filho FJ (2009) Antimicrobial action of intracanal medicaments on the external root surface. J Dent 37:76–81

    Article  CAS  PubMed  Google Scholar 

  • Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres, and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadgraft J (2001) Skin, the final frontier. Int J Pharm 224:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2007) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985

    Article  CAS  Google Scholar 

  • Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermida-Montero LA, Pariona N, Mtz-Enriquez AI, Carrión G, Paraguay-Delgado F, Rosas-Saito G (2019) Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J Hazard Mater 380:120850

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Zheng X, Hu H, Li Y (2009) Chemical compositions and antimicrobial activities of essential oils extracted from Acanthopanaxbrachypus. Arch Pharm Res 32:699–710

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357

    Article  CAS  PubMed  Google Scholar 

  • Johannsen M, Gneveckow U, Taymoorian K (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 23:315–323

    Article  CAS  PubMed  Google Scholar 

  • Johnson ME, Blankschtein D, Langer R (1997) Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci 86:1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MF (2019) Antimicrobial polymers: the potential replacement of existing antibiotics? Int J Mol Sci 20:2747–2778

    Article  PubMed Central  Google Scholar 

  • Kang R, Lipner S (2019) Consumer preferences of antifungal products for treatment and prevention of tinea pedis. J Dermatolog Treat 24:1–5

    Google Scholar 

  • Kaushik D, Khokra SL, Kaushik P, Sharma C, Aneja KR (2010) Evaluation of antioxidant and antimicrobial activity of Abutilon indicum. Pharmacologyonline 1:102–108

    Google Scholar 

  • Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444–461

    Article  PubMed Central  CAS  Google Scholar 

  • Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces 1:70–83

    Article  CAS  Google Scholar 

  • Khurana A, Sardana K, Chowdhary A (2019) Antifungal resistance in dermatophytes: recent trends and therapeutic implications. Fungal Genet Biol 19:103255. https://doi.org/10.1016/j.fgb.2019.103255

    Article  CAS  Google Scholar 

  • Kim SH, Kwak S, Sohn B, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thinfilm-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211:157–165

    Article  CAS  Google Scholar 

  • Kimmis BD, Downing C, Tyring S (2018) Hand-foot-and-mouth disease caused by coxsackievirus A6 on the rise. Cutis 102:353–356

    PubMed  Google Scholar 

  • Kühbacher A, Burger-Kentischer A, Rupp S (2017) Interaction of Candida species with the skin. Microorganisms 5:32. https://doi.org/10.3390/microorganisms5020032

    Article  CAS  PubMed Central  Google Scholar 

  • Lademann J, Richter H, Teichmann A, Otberg N, Blume Peytavi U, Luengo J (2007) Nanoparticles: an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66:159–164

    Article  CAS  PubMed  Google Scholar 

  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 255(1–2), 33–37

    Article  CAS  PubMed  Google Scholar 

  • Lauer AC, Ramachandran C, Lieb LM, Niemiec S, Weiner ND (1996) Targeted delivery to the pilosebaceous unit via liposomes. Adv Drug Deliv Rev 18:311–324

    Article  CAS  Google Scholar 

  • Le Lay C, Akerey B, Fliss I, Subirade M, Rouabhia M (2008) Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J Appl Microbiol 105:1630–1639

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Mishra YK, Adelung R, Röhl C, Shukla D, Spors F, Tiwari V (2011) Virostatic potential of micro-nanofilopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res 92:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, Raina S (2008) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:S235–S241

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M (2019) Synthesis and application of silver nanoparticles (AgNPs) for the prevention of infection in healthcare workers. Int J Mol Sci 20:3620–3638

    Article  PubMed Central  Google Scholar 

  • Nasir A (2010) Nanotechnology and dermatology: part II risks of nanotechnology. Clin Dermatol 28:581–588

    Article  PubMed  Google Scholar 

  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347

    Article  CAS  PubMed  Google Scholar 

  • Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact 295:38–51

    Article  CAS  PubMed  Google Scholar 

  • Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149

    Article  CAS  PubMed  Google Scholar 

  • Ouf SA, El-Adly AA, Mohamed AH (2015) Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J Med Microbiol 64:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Owais M, Gupta CM (2005) Targeted drug delivery to macrophages in parasitic infections, Curr. Drug Deliv 2:311–318

    CAS  Google Scholar 

  • Pan Y, Neuss S, Leifert A (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10:1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, Chavda F, Badwaik V et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 27, 1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raju G, Katiyar N, Vadukumpully S, Shankarappa SA (2018) Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J Dermatol Sci 89:146–154

    Article  CAS  PubMed  Google Scholar 

  • Rezaie S, Shahverdi AR (2011) Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. In: 2011 International Conference on Bioscience, Biochemistry and Bioinformatics, vol 5. IACSIT, Singapore

    Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  PubMed  Google Scholar 

  • Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) Escherichia coli damage by ceramic powder slurries. J Chem Eng 30:1034–1039

    Article  CAS  Google Scholar 

  • Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–532

    Article  CAS  Google Scholar 

  • Sharma A, Sharma U (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC (2014) Practice guidelines for the diagnosis and management of skin and soft tissue infections: update by the Infectious Diseases Society of America. Clin Infect Dis 59:e10–e52

    Article  PubMed  Google Scholar 

  • Sutradhar P, Saha M, Maiti D (2014) Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4, 86

    Google Scholar 

  • Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L (2008) Surface chemistry influences cancer-killing effect of TiO2 nanoparticles. Nanomedicine 4:226–236

    Article  CAS  PubMed  Google Scholar 

  • Trigilio J, Antoine TE, Paulowicz I, Mishra YK, Adelung R, Shukla D (2012) Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion. PLoS One 7:e48147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari N, Pandit R, Gaikwad S, Gade A, Rai M (2017) Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnology, 11(2), 205–211

    Article  PubMed  Google Scholar 

  • Ugur SS, Sarıışık M, Aktaş AH, Uçar MC, Erden E (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5:1204–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479

    PubMed  PubMed Central  Google Scholar 

  • Valderrama-Beltrán S, Gualtero S, Álvarez-Moreno C, Gil F, Ruiz-Morales Á, Rodríguez JY, Osorio J, Tenorio I, Quintero CG, Mackenzie S, Caro MA, Zhong A, Arias G, Berrio I, Martinez E, Cortés G, De la Hoz A, Arias CA (2019) Risk factors associated with methicillin-resistant Staphylococcus aureus skin and soft tissue infections in hospitalized patients in Colombia. Int J Infect Dis 19:30292–302910

    Google Scholar 

  • Wang Z, Von Dem Bussche A, Kabadi PK, Kane AB, Hurt RH (2013) Biological and environmental transformations of copper-based nanomaterials. ACS Nano 7:8715–8727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitley R, Baines J (2018) Clinical management of herpes simplex virus infections: past, present, and future. F1000 Res 7(F1000 Faculty Rev):1726

    Article  Google Scholar 

  • Xi A, Bothun GD (2014) Centrifugation-based assay for examining nanoparticle–lipid membrane binding and disruption. Analyst 139:973–981

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W, Chen Z, Wang X, Chen X, Gao J (2013) Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 7:3287–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, D., Saha, R., Mukhopadhyay, M. (2020). Combination Therapy Using Metal Nanoparticles for Skin Infections. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_3

Download citation

Publish with us

Policies and ethics