Skip to main content

Additive Manufacturing and Nanotherapeutics: Present Status and Future Perspectives in Wound Healing

  • Chapter
  • First Online:
Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

In the past decades, additive manufacturing had emerged as a cost-effective and clinically acceptable means for fabrication of diverse and biologically compatible materials of complex geometrical structure. This technology can use an array of materials (mainly biopolymers) as carriers, which can print the incorporated cells, drug, or even nanoparticles in desired shape with high accuracy and precision.

In this chapter, we have highlighted the current status and the future scope of fabricating the tailor-made nanotherapeutics and additive manufacturing techniques for effective wound healing. Current market demand of the tailor-made wound dressings/implants has contributed positively towards the use of additive manufacturing in their fabrication as it can address specific problems associated with various phases (namely hemostasis, inflammation, proliferation, and remodeling) of wound healing phenomenon. Additive manufacturing fabricated materials can either work as carriers for nanostructured therapeutic agents like silver nanoparticles, nanoparticle loaded antibiotics and antioxidants or they can print biomaterials (with or without drug) in complex nanoporous scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahangar P, Akoury E, Ramirez Garcia Luna AS, Nour A, Weber MH, Rosenzweig DH (2018) Nanoporous 3D-printed scaffolds for local doxorubicin delivery in bone metastases secondary to prostate cancer. Materials (Basel) 11:1485

    Article  CAS  Google Scholar 

  • Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203

    Article  CAS  PubMed  Google Scholar 

  • Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, Ameer GA, He TC, Reid RR (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis 4:185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  PubMed  Google Scholar 

  • Byambaa B, Annabi N, Yue K, de Santiago GT, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6:1700015–1700030

    Article  CAS  Google Scholar 

  • Chaudhary C, Garg T (2015) Scaffolds: a novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst 32:277–321

    Article  PubMed  Google Scholar 

  • Chen WY, Chang HY, Lu JK, Huang YC, Harroun SG, Tseng YT, Li YJ, Huang CC, Chang HT (2015) Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Funct Mater 25:7189–7199

    Article  CAS  Google Scholar 

  • Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine 12:1335–1352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP (2013) Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34:2194–2201

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5:137–145

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Yu D, Wang P, Xu J, Li D, Ding M (2010) Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen 18:499–505

    Article  PubMed  Google Scholar 

  • Das S, Baker AB (2016) Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 4:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Das S, Majid M, Baker AB (2016a) Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 42:56–65

    Article  CAS  PubMed  Google Scholar 

  • Das S, Monteforte AJ, Singh G, Majid M, Sherman MB, Dunn AK, Baker AB (2016b) Syndecan-4 enhances therapeutic angiogenesis after hind limb ischemia in mice with type 2 diabetes. Adv Healthc Mater 5:1008–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662

    Article  CAS  Google Scholar 

  • Duan B, Wang M, Zhou WY, Cheung WL, Yang Z, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6:4495–4505

    Article  CAS  PubMed  Google Scholar 

  • Fife CE, Carter MJ (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US wound registry. Wounds 24:10–17

    PubMed  Google Scholar 

  • Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 1:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garay-Jimenez JC, Gergeres D, Young A, Lim DV, Turos E (2009) Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanomedicine 5:443–451

    Article  CAS  PubMed  Google Scholar 

  • Gill AS, Deol PK, Kaur IP (2019) An update on the use of alginate in additive biofabrication techniques. Curr Pharm Des 25:1249–1264

    Article  CAS  PubMed  Google Scholar 

  • Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O (2012) Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 7:1841–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham C (2005) The role of silver in wound healing. Br J Nurs 14:S22, S24, S26 passim

    Article  PubMed  Google Scholar 

  • Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner A, Lovrić J, LakoÅ¡ GP, Pepić I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005

    PubMed  PubMed Central  Google Scholar 

  • Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci 3:163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34:599–610

    Article  PubMed  PubMed Central  Google Scholar 

  • He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, Li X (2018) Bioprinting of skin constructs for wound healing. Burns Trauma 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes B, Bulusu K, Plesniak M, Zhang LG (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27:064001–064028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364

    Article  Google Scholar 

  • Jacob DS, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A (2006) Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chem Mater 18:3162–3168

    Article  CAS  Google Scholar 

  • Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS (2017) 3D bioprinting for reconstructive surgery: principles, applications and challenges. J Plast Reconstr Aesthet Surg 70:1155–1170

    Article  PubMed  Google Scholar 

  • Ji HW, Sun HJ, Qu XG (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189

    Article  CAS  PubMed  Google Scholar 

  • Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II Renewed interest for silver. Burns 26:131–138

    Article  CAS  PubMed  Google Scholar 

  • Kuchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, Schäfer-Korting M, Kramer KD (2009) Nanoparticles for skin penetration enhancement—a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm 71:243–250

    Article  PubMed  CAS  Google Scholar 

  • Kuchler S, Herrmann W, Panek-Minkin G, Blaschke T, Zoschke C, Kramer KD, Bittl R, Schäfer-Korting M (2010a) SLN for topical application in skin diseases—characterization of drug-carrier and carrier-target interactions. Int J Pharm 390:225–233

    Article  PubMed  CAS  Google Scholar 

  • Kuchler S, Wolf NB, Heilmann S, Weindl G, Helfmann J, Yahya MM, Stein C, Schäfer-Korting M (2010b) 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol 148:24–30

    Article  PubMed  CAS  Google Scholar 

  • Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, Wang TW (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10:4156–4166

    Article  CAS  PubMed  Google Scholar 

  • Lansdown AB (2002) Silver. I: its antibacterial properties and mechanism of action. J Wound Care 11:125–130

    Article  CAS  PubMed  Google Scholar 

  • Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao YD (2012) The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and alpha-lipoic acid. Nanomedicine 8:767–775

    Article  CAS  PubMed  Google Scholar 

  • Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  PubMed  Google Scholar 

  • Maas M (2016) Carbon nanomaterials as antibacterial colloids. Mater Sci Eng C 9:617

    Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434

    Article  CAS  PubMed  Google Scholar 

  • Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812

    Article  CAS  PubMed  Google Scholar 

  • Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9:174–190

    Article  PubMed  CAS  Google Scholar 

  • Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436

    PubMed  PubMed Central  Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  • Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Ghodsi MA, Davaran S, Montaseri A (2018) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 46:691–705

    Article  CAS  PubMed  Google Scholar 

  • Rakhmetova AA, Alekseeva TP, Bogoslovskaya OA, Leipunskii IO, Ol’khovskaya IP, Zhigach AN (2010) Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nanotechnol Russ 5:271–276

    Article  Google Scholar 

  • Randeria PS, Seeger MA, Wang XQ, Wilson H, Shipp D, Mirkin CA, Paller AS (2015) siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A 112:5573–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani S, Ritter T (2016) The exosome: a naturally secreted nanoparticle and its application to wound healing. Adv Mater 28:5542–5552

    Article  CAS  PubMed  Google Scholar 

  • Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE Thomas DW (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2015:925757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh D, Han S (2016) 3D printing of scaffold for cells delivery: advances in skin tissue engineering. Polymers 8:19

    Article  PubMed Central  CAS  Google Scholar 

  • Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17:53–56

    Article  CAS  PubMed  Google Scholar 

  • Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH (2018) 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 132:296–332

    Article  CAS  PubMed  Google Scholar 

  • Wasiak J, Cleland H, Campbell F Spinks A (2013) Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev (3):CD002106

    Google Scholar 

  • Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA (2008) An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372:139–144

    Article  PubMed  Google Scholar 

  • Wong KK, Cheung SO, Huang L, Niu J, Tao C, Ho CM, Che CM, Tam PK (2009) Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 4:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2016) Golbal report on diabetes

    Google Scholar 

  • Xie ZW, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang LP, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9:9351–9359

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Molino BZ, Wang X, Cheng F, Xu W, Molino P, Bacher M, Su D, Rosenau T, Willfo S, Wallace G (2018) 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B 6:7066–7075

    Article  CAS  PubMed  Google Scholar 

  • Zhou EH, Watson C, Pizzo R, Cohen J, Dang Q, Ferreira de Barros PM, Park CY, Chen C, Brain JD, Butler JP, Ruberti JW et al (2014) Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay. Nanomedicine 9:2803–2815

    Article  CAS  PubMed  Google Scholar 

  • Ziv-Polat O, Topaz M, Brosh T, Margel S (2010) Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 31:741–747

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deol, P.K., Gill, A.S., Prajapati, S., Kaur, I.P. (2020). Additive Manufacturing and Nanotherapeutics: Present Status and Future Perspectives in Wound Healing. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_12

Download citation

Publish with us

Policies and ethics