Skip to main content

Applications of Chitosan and Nanochitosan in Formulation of Novel Antibacterial and Wound Healing Agents

  • Chapter
  • First Online:
Book cover Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

Applications of chitosan and nanochitosan biomaterials in biomedical field are based on important advantages of this biopolymer including biocompatibility, biodegradability, hemostatic, antimicrobial activities, acceleration in wound healing process, nearly controlled release of antimicrobial agents and growth factors. However, low solubility of chitosan in physiological pH condition is important disadvantage which can be resulted in fast metabolism of this biopolymer by enzymes of gastrointestinal tract. Other striking drawbacks in chitosan application are low degree of stability, mechanical resistance, and porosity which can have negative effects on wound healing. Hence, it can be used as biocomposites/nano-biocomposites forms via interaction with natural and synthetic polymers or other materials. Considering these facts, recent advancements related to wound healing and antibacterial agents based on combination of chitosan with major natural polymers involving cellulose, collagen, alginic acid, hyaluronic acid, starch, and chondroitin sulfate are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AND:

Andrographolide

ChNF:

Chitosan nanofibril

ChNC:

Chitosan nanocrystal

CN:

Chitosan nanoparticle

CNC:

Cellulose nanocrystal

CNF:

Cellulose nanofibril

CNW:

Cellulose nanowhiskers

CPP:

Cell-penetrating peptide

DA:

Deacetylation

ECM:

Extracellular matrix

EDTAD:

Ethylenediaminetetraacetic acid dianhydride

IαI:

Inter-α-inhibitor

KGM:

Konjac glucomannan

MRSA:

Methicillin resistant Staphylococcus aureus

MSSA:

Me thicillin sensitive Staphylococcus aureus

MTGase:

Microbial transglutaminase

NC:

Nanocellulose

NLC:

Nanostructured lipid carrier

PVA:

Polyvinyl alcohol

PVP:

Polyvinyl pyrrolidone

S:

Stearic acid

SLN:

Solid lipid nanoparticle

TSG-6:

TNF-stimulated gene 6

VEGF:

Vascular endothelial growth factor

References

  • Alavi M, Karimi N (2018a) Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif Cells Nanomed Biotechnol 46:S399–S413

    Article  CAS  Google Scholar 

  • Alavi M, Karimi N (2018b) Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells Nanomed Biotechnol 46:2066–2081

    Article  CAS  Google Scholar 

  • Alavi M (2019) Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers 19:103–119

    Article  Google Scholar 

  • Alavi M, Karimi N (2019) Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. Int J Biol Macromol 128:893–901

    Article  CAS  Google Scholar 

  • Alavi M, Rai M (2019a) Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti-Infect Ther 17:419–428. https://doi.org/10.1080/14787210.2019.1614914

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Rai M (2019b) Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol 103: 8669–8676. https://doi.org/10.1007/s00253-019-10126-4

    Article  CAS  Google Scholar 

  • Arrouze F, Desbrieres J, Rhazi M, Essahli M, Tolaimate A (2019) Valorization of chitins extracted from North Morocco shrimps: comparison of chitin reactivity and characteristics. J Appl Polym Sci 136:47804

    Article  Google Scholar 

  • Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28:2220–2241. https://doi.org/10.1080/09205063.2017.1390383

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Zhang H, Luan Q, Zheng M, Tang H, Huang F (2018) Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydr Polym 184:66–73. https://doi.org/10.1016/j.carbpol.2017.12.051

    Article  CAS  PubMed  Google Scholar 

  • Belvedere R, Bizzarro V, Parente L, Petrella F, Petrella A (2018) Effects of Prisma® skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adhes Migr 12:168–183. https://doi.org/10.1080/19336918.2017.1340137

    Article  CAS  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  • Cahú TB, Silva RA, Silva RPF, Silva MM, Arruda IRS, Silva JF, Costa RMPB, Santos SD, Nader HB, Bezerra RS (2017) Evaluation of chitosan-based films containing gelatin, chondroitin 4-sulfate and ZnO for wound healing. Appl Biochem Biotechnol 183:765–777

    Article  Google Scholar 

  • Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, Saha P (2018) Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 116:774–785. https://doi.org/10.1016/j.ijbiomac.2018.05.099

    Article  CAS  PubMed  Google Scholar 

  • Chen G-W, Lin Y-H, Lin C-H, Jen H-C (2018) Antibacterial activity of emulsified pomelo (Citrus grandis Osbeck) peel oil and water-soluble chitosan on Staphylococcus aureus and Escherichia coli. Molecules (Basel, Switzerland) 23:840

    Article  Google Scholar 

  • Concha MS, Vidal A, Giacaman A, Ojeda J, Pavicic F, Oyarzun-Ampuero FA, Torres C, Cabrera MP, Moreno-Villoslada I, Orellana SL (2018) Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: biological properties toward wound healing. J Biomed Mater Res B Appl Biomater 106:2464–2471. https://doi.org/10.1002/jbm.b.34038

    Article  CAS  PubMed  Google Scholar 

  • Dumont M, Villet R, Guirand M, Montembault A, Delair T, Lack S, Barikosky M, Crepet A, Alcouffe P, Laurent F, David L (2018) Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr Polym 190:31–42. https://doi.org/10.1016/j.carbpol.2017.11.088

    Article  CAS  PubMed  Google Scholar 

  • Elwakeel KZ, Aly MH, El-Howety MA, El-Fadaly E, Al-Said A (2018) Synthesis of chitosan@ activated carbon beads with abundant amino groups for capture of cu (II) and cd (II) from aqueous solutions. J Polym Environ 26(9):3590–3602

    Article  CAS  Google Scholar 

  • Fahmy HM, Aly AA, Abou-Okeil A (2018) A non-woven fabric wound dressing containing layer—by—layer deposited hyaluronic acid and chitosan. Int J Biol Macromol 114:929–934. https://doi.org/10.1016/j.ijbiomac.2018.03.149

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Wu H, Zhou X, Peng M, Tong J, Xie W, Liu S (2014) Transglutaminase-catalyzed grafting collagen on chitosan and its characterization. Carbohydr Polym 105:253–259. https://doi.org/10.1016/j.carbpol.2014.01.065

    Article  CAS  PubMed  Google Scholar 

  • Fardioui M, Meftah Kadmiri I, Aek Q, Bouhfid R (2018) Bio-active nanocomposite films based on nanocrystalline cellulose reinforced styrylquinoxalin-grafted-chitosan: antibacterial and mechanical properties. Int J Biol Macromol 114:733–740. https://doi.org/10.1016/j.ijbiomac.2018.03.114

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Maestu A, Ma Z, Paik S-Y-R, Chen N, Ko S, Tong Z, Jeong KC (2018) Engineering of chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydr Polym 197:623–630. https://doi.org/10.1016/j.carbpol.2018.06.046

    Article  CAS  PubMed  Google Scholar 

  • Gómez Chabala LF, Cuartas CEE, López MEL (2017) Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles. Mar Drugs 15:328

    Article  Google Scholar 

  • Henningham A, Davies MR, Uchiyama S, Sorge NM, Lund S, Chen KT, Walker MJ, Cole JN, Nizet V (2018) Virulence role of the GlcNAc side chain of the Lancefield Cell Wall carbohydrate antigen in non-M1-serotype group a Streptococcus. MBio 9:e02294–e02217

    Article  CAS  Google Scholar 

  • Huang J, Ren J, Chen G, Li Z, Liu Y, Wang G, Wu X (2018) Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Mater Sci Eng C 89:213–222. https://doi.org/10.1016/j.msec.2018.04.009

    Article  CAS  Google Scholar 

  • Hussain Z, Thu HE, Katas H, Bukhari SNA (2017) Hyaluronic acid-based biomaterials: a versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds. Polym Rev 57:594–630

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  • Li M, Han M, Sun Y, Hua Y, Chen G, Zhang L (2019) Oligoarginine mediated collagen/chitosan gel composite for cutaneous wound healing. Int J Biol Macromol 122:1120–1127. https://doi.org/10.1016/j.ijbiomac.2018.09.061

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wen H, Rao Z, Zhu C, Liu M, Min L, Fan L, Tao S (2018) Preparation and characterization of chitosan—collagen peptide/oxidized konjac glucomannan hydrogel. Int J Biol Macromol 108:376–382. https://doi.org/10.1016/j.ijbiomac.2017.11.128

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Lu F, Zou Y, Liu J, Rong B, Li Z, Dai F, Wu D, Lan-less G (2017) In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity. Carbohydr Polym 173:556–565. https://doi.org/10.1016/j.carbpol.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Garrido-Maestu A, Jeong KC (2017) Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: a review. Carbohydr Polym 176:257–265

    Article  CAS  Google Scholar 

  • Michalska-Sionkowska M, Kaczmarek B, Walczak M, Sionkowska A (2018) Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater Sci Eng C 86:103–108. https://doi.org/10.1016/j.msec.2018.01.005

    Article  CAS  Google Scholar 

  • Moreira ALDSL, de Souza Pereira A, Speziali MG, Novack KM, Gurgel LVA, Gil LF (2018) Bifunctionalized chitosan: a versatile adsorbent for removal of Cu (II) and Cr (VI) from aqueous solution. Carbohydr Polym 201:218–227

    Article  CAS  Google Scholar 

  • Park H, Lee HJ, An H, Lee KY (2017) Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr Polym 162:100–107

    Article  CAS  Google Scholar 

  • Patrulea V, Ostafe V, Borchard G, Jordan O (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426

    Article  CAS  Google Scholar 

  • Poonguzhali R, Basha SK, Kumari VS (2018a) Nanostarch reinforced with chitosan/poly (vinyl pyrrolidone) blend for in vitro wound healing application. Polym-Plast Technol Eng 57:1400–1410. https://doi.org/10.1080/03602559.2017.1381255

    Article  CAS  Google Scholar 

  • Poonguzhali R, Khaleel Basha S, Sugantha Kumari V (2018b) Fabrication of asymmetric nanostarch reinforced chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. Int J Biol Macromol 114:204–213. https://doi.org/10.1016/j.ijbiomac.2018.03.092

    Article  CAS  PubMed  Google Scholar 

  • Sanad RA-B, Abdel-Bar HM (2017) Chitosan–hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing. Carbohydr Polym 173:441–450. https://doi.org/10.1016/j.carbpol.2017.05.098

    Article  CAS  PubMed  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson EL, Yong VW (2018) Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol 71-72:432–442. https://doi.org/10.1016/j.matbio.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  • Taran M, Rad M, Alavi M (2016) Characterization of Ag nanoparticles biosynthesized by Bacillus sp. HAI4 in different conditions and their antibacterial effects. J Appl Pharm Sci 6:094–099

    Article  CAS  Google Scholar 

  • Thaya R, Vaseeharan B, Sivakamavalli J, Iswarya A, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-Anbr MN, Khaled JM, Benelli G (2018) Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb Pathog 114:17–24. https://doi.org/10.1016/j.micpath.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  • Tighe RM, Garantziotis S (2018) Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 78-79:84–99. https://doi.org/10.1016/j.matbio.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  • Torres FG, Commeaux S, Troncoso OP (2013) Starch-based biomaterials for wound-dressing applications. Starch 65:543–551. https://doi.org/10.1002/star.201200259

    Article  CAS  Google Scholar 

  • Urrutia P, Bernal C, Wilson L, Illanes A (2018) Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int J Biol Macromol 116:182–193. https://doi.org/10.1016/j.ijbiomac.2018.04.112

    Article  CAS  PubMed  Google Scholar 

  • Vecchies F, Sacco P, Decleva E, Menegazzi R, Porrelli D, Donati I, Turco G, Paoletti S, Marsich E (2018) Complex coacervates between a lactose-modified chitosan and hyaluronic acid as radical-scavenging drug carriers. Biomacromolecules 19(10):3936–3944. https://doi.org/10.1021/acs.biomac.8b00863

    Article  CAS  PubMed  Google Scholar 

  • Waghmare VS, Wadke PR, Dyawanapelly S, Deshpande A, Jain R, Dandekar P (2018) Starch based nanofibrous scaffolds for wound healing applications. Bioactive Mater 3:255–266. https://doi.org/10.1016/j.bioactmat.2017.11.006

    Article  Google Scholar 

  • Wang CG, Lou YT, Tong MJ, Zhang LL, Zhang ZJ, Feng YZ, Li S, Xu HZ, Mao C (2018) Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling. Acta Pharmacol Sin 39:393

    Article  CAS  Google Scholar 

  • Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D, Chen J (2018) Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem 240:361–369. https://doi.org/10.1016/j.foodchem.2017.07.052

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Guo L, Liu M, Cao X, Shang S, Liu Z, Huang D, Cao Y, Cui F, Tian L (2018) Callicarpa nudiflora loaded on chitosan-collagen/organomontmorillonite composite membrane for antibacterial activity of wound dressing. Int J Biol Macromol 120(Pt B):2279–2284. https://doi.org/10.1016/j.ijbiomac.2018.08.113

    Article  CAS  PubMed  Google Scholar 

  • Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H (2018) Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 118:1045–1054

    Article  CAS  Google Scholar 

  • Zhang H, Peng M, Cheng T, Zhao P, Qiu L, Zhou J, Lu G, Chen J (2018) Silver nanoparticles-doped collagen–alginate antimicrobial biocomposite as potential wound dressing. J Mater Sci 53:14944–14952. https://doi.org/10.1007/s10853-018-2710-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alavi, M. (2020). Applications of Chitosan and Nanochitosan in Formulation of Novel Antibacterial and Wound Healing Agents. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_10

Download citation

Publish with us

Policies and ethics