Skip to main content

Biological Control of Forest Pests in Uruguay

  • Chapter
  • First Online:

Abstract

Commercial tree plantations cover around a million ha in Uruguay, mostly with stands of eucalypt and pine trees. Uruguayan forestry was free of serious insect pest until the end of the twentieth century. Beginning in the 1990s, both forestry area and international trade experienced an exponential growth, followed by an increase of invasive insect records. More than half of the pests currently affecting Eucalyptus entered the country after 1995. The use of pesticides is greatly restricted, provided around 90% of the plantations are under FSC and/or PEFC certification schemes. Hence, the Uruguayan forestry has relied mainly on silvicultural and biological control to suppress insect pest populations. Biological control for forest insect pests in Uruguay can be tracked back to 1941. Currently, biological control with entomophagous or entomopathogenic organisms has been, or is currently being, implemented for eight insect pests in plantations in Uruguay. More than five parasitoid wasps and a nematode have been released and installed in the field. There are also at least two cases of introduction of entomophagous organisms simultaneously with the pest. I discuss the future of biological control in Uruguay, focusing on the advantages it possesses and the challenges it faces under the current pest status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreo E, Simeto S, Corallo B, Martínez G, Lupo S, Altier N (2019) Dual selection of Beauveria bassiana strains and complex substrate media for the massive production of submerged propagules with activity against the eucalyptus bronze bug Thaumastocoris peregrinus. Biocontrol Sci Technol 29(6):533–546. https://doi.org/10.1080/09583157.2019.1566952

    Article  Google Scholar 

  • Anderson C, Low-Choy S, Whittle P, Taylor S, Gambley C, Smith L et al (2017) Australian plant biosecurity surveillance systems. Crop Prot 100:8–20. https://doi.org/10.1016/j.cropro.2017.05.023

    Article  Google Scholar 

  • Augustin S, Boonham N, De Kogel WJ, Donner P, Faccoli M, Lees DC et al (2012) A review of pest surveillance techniques for detecting quarantine pests in Europe. EPPO Bull 42(3):515–551. https://doi.org/10.1111/epp.2600

    Article  Google Scholar 

  • Balmelli G, Marroni V, Altier N, García R (2004) Potencial del mejoramiento genético para el manejo de enfermedades en Eucalyptus globulus, (Núm. 174). http://www.inia.uy/Publicaciones/Documentos%20compartidos/15630021107132338.pdf

  • Balmelli G, Martínez G, Simeto S (2008) Desarrollo de propuestas de investigación tendientes a la solución de los principales problemas sanitarios de las plantaciones forestales (Informe final Núm. FO_03; p 25). Instituto Nacional de Investigación Agropecuaria, Tacuarembó

    Google Scholar 

  • Balmelli G, Resquin F, Simeto S, Torres D, Núñez P, Rodríguez F, González W (2014a) Variabilidad genética en susceptibilidad a Teratosphaeria pseudoeucalypti en Eucaliptos colorados. VI Jornada Técnica de Protección Forestal. 1st edn. Serie Técnica. INIA, Tacuarembó, pp 85–91. http://www.ainfo.inia.uy/digital/bitstream/item/3429/1/ST-213-Cap-9.pdf

  • Balmelli G, Simeto S, Marroni V, Altier N, Diez JJ (2014b) Genetic variation for resistance to Mycosphaerella leaf disease and Eucalyptus rust on Eucalyptus globulus in Uruguay. Australas Plant Pathol 43(1):97–107. https://doi.org/10.1007/s13313-013-0254-7

    Article  Google Scholar 

  • Barratt BIP, Moran VC, Bigler F, van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. BioControl 63(1):155–167. https://doi.org/10.1007/s10526-017-9831-y

    Article  Google Scholar 

  • Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15(6):2084–2096. https://doi.org/10.1890/04-1903

    Article  Google Scholar 

  • BCU (2018) Informe de cuentas nacionales, pp 1–12. https://www.bcu.gub.uy/Estadisticas-e-Indicadores/Cuentas%20Nacionales/eecn11d1218.pdf

  • Bentancourt CM, Scatoni IB (2001) Enemigos naturales. Manual ilustrado para la agricultura y la forestación. Facultad de Agronomía—Ed. Agropecuaria Hemisferio Sur, Montevideo

    Google Scholar 

  • Bettucci L, Lupo S, Sánchez A (2006 diciembre) Control microbiano de enfermedades y plagas forestales. Forestal. Revista de la Sociedad de Productores Forestales de Uruguay 30:19–24

    Google Scholar 

  • Bianchi M (2004) Hallazgo de un nematodo parásito de Phoracantha recurva Newman, 1842 y Phoracantha semipunctata Fabricius, 1775 (Coleoptera: Cerambycidae) en el Uruguay. Agrociencia VIII(1):85–88

    Google Scholar 

  • Bianchi M (2008 febrero 20) Personal interview [Recorded]

    Google Scholar 

  • Bianchi M, Sánchez A (1999a). Phoracantha recurva Newman y Phoracantha semipunctata (Fabricius). En Bentancourt CM, Scatoni IB (ed) Guía de insectos y ácaros de importancia agrícola y forestal en el Uruguay. FA.PREDEG.GTZ, Montevideo, p 69

  • Bianchi M, Sánchez A (1999b) Taladro de los eucaliptos. Uruguay Forestal 20:18–19

    Google Scholar 

  • Bianchi M, Sánchez A (2004) Glycaspis brimblecombei Moore (Homoptera: Psyllidae). Un nuevo psílido asociado a Eucalyptus sp. Detectado recientemente en Brasil y Chile. Forestal. Revista de la Sociedad de Productores Forestales de Uruguay 24:8–10

    Google Scholar 

  • Bianchi M, Martínez G, Sánchez A (2008) Plan piloto de monitoreo para Thaumastocoris peregrinus en plantaciones de Eucalyptus sp. En Uruguay. [Informe para el CECOPE]. Comité Ejecutivo de Coordinación en materia de plagas y enfermedades que afectan plantaciones forestales (CECOPE), Montevideo, p 7

    Google Scholar 

  • Bilodeau P, Roe AD, Bilodeau G, Blackburn GS, Cui M, Cusson M et al (2019) Biosurveillance of forest insects: part II—adoption of genomic tools by end user communities and barriers to integration. J Pest Sci 92(1):71–82. https://doi.org/10.1007/s10340-018-1001-1

    Article  Google Scholar 

  • Boavida C, Garcia A, Branco M (2016) How effective is Psyllaephagus bliteus (Hymenoptera: Encyrtidae) in controlling Glycaspis brimblecombei (Hemiptera: Psylloidea)? Biol Control 99:1–7. https://doi.org/10.1016/j.biocontrol.2016.04.003

    Article  Google Scholar 

  • Boscana M, Boragno L (2018) Actualidad del sector forestal. In: Souto G, Tambler A, Bervejillo J (eds) Anuario OPYPA 2018. OPYPA-MGAP, Montevideo, pp 229–239

    Google Scholar 

  • Bouwer MC, Slippers B, Wingfield MJ, Rohwer ER (2014) Chemical signatures affecting host choice in the Eucalyptus herbivore, Gonipterus sp. (Curculionidae: Coleoptera). Arthropod Plant Interact 8(5):439–451. https://doi.org/10.1007/s11829-014-9327-y

    Article  Google Scholar 

  • Brodeur J, Abram PK, Heimpel GE, Messing RH (2018) Trends in biological control: public interest, international networking and research direction. BioControl 63(1):11–26. https://doi.org/10.1007/s10526-017-9850-8

    Article  Google Scholar 

  • Burckhardt D, Santana DLQ, Terra AL, de Andrade FM, Penteado SRC, Iede ET, Morey CS (1999) Psyllid pests (Hemiptera, Psylloidea) in South American eucalypt plantations. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft 72(1/2):1–10. Recuperado de CABDirect2

    Google Scholar 

  • Caleca V, Verde GL, Maltese M (2011) First record in Italy of Psyllaephagus bliteus Riek (Hymenoptera Encyrtidae) parasitoid of Glycapsis brimblecombei (Hemiptera: Psyllidae). Il Naturalista Siciliano 35:435–444

    Google Scholar 

  • Carnegie AJ, Lawson S, Wardlaw T, Cameron N, Venn T (2018) Benchmarking forest health surveillance and biosecurity activities for managing Australia’s exotic forest pest and pathogen risks. Aust For 81:14–23. https://doi.org/10.1080/00049158.2018.1433271

    Article  Google Scholar 

  • CECOPE (2012) Estrategia nacional de manejo forestal para la salud y vitalidad de los bosques plantados. Periodo 2010-2030. CECOPE, Montevideo, pp 1–29

    Google Scholar 

  • Ciesla WM (2011) Forest entomology: a global perspective. Wiley-Blackwell, Chichester, West Sussex; Hoboken, NJ

    Book  Google Scholar 

  • Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl 61(4):349–363. https://doi.org/10.1007/s10526-016-9726-3

    Article  CAS  Google Scholar 

  • Corallo B, Tiscornia S, Galvalisi U, Lupo S, Bettucci L (2017) Combined biological and chemical control of Neotropical leaf-cutting ants (Acromyrmex spp.) under field conditions. Trends Entomol 13:103–108

    Google Scholar 

  • Corallo B, Simeto S, Martínez G, Gómez D, Abreo E, Altier N, Lupo S (2019) Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. J Appl Entomol 143(5):542–555. https://doi.org/10.1111/jen.12624

    Article  Google Scholar 

  • Cordero Rivera A, Santolamazza Carbone S, Andrés JA (1999) Life cycle and biological control of the Eucalyptus snout beetle (Coleoptera, Curculionidae) by Anaphes nitens (Hymenoptera, Mymaridae) in north-west Spain. Agric For Entomol 1:103–109

    Article  Google Scholar 

  • Dahlsten D, Hansen E, Zuparko R, Norgaard R (1998) Biological control of the blue gum psyllid proves economically beneficial. Calif Agric 52(1):35–40

    Article  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46(4):387–400

    Article  Google Scholar 

  • Etzel LK, Legner EF (1999) Chapter 7 - Culture and colonization. In: Bellows TS, Fisher TW, Caltagirone LE, Dahlsten DL, Gordh G, Huffaker CB (eds) Handbook of Biological Control. Academic Press, San Diego, pp 125–197

    Chapter  Google Scholar 

  • FAO (2005) ISPM 3. Guidelines for the export, shipment, import and release of biological control agents and other beneficial organisms

    Google Scholar 

  • FAO-MGAP (2006) Plagas y enfermedades de eucaliptos y pinos en el Uruguay. http://www.mgap.gub.uy/Forestal/FaoManualdeCampo.pdf

  • Fernández-Arhex V, Corley JC (2005) The functional response of Ibalia leucospoides (Hymenoptera: Ibaliidae), a parasitoid of Sirex noctilio (Hymenoptera: Siricidae). Biocontrol Sci Technol 15(2):207–212

    Article  Google Scholar 

  • Fonalleras ML (2012) COSAVE: una experiencia de integración regional. http://www.iica.int/Esp/Programas/Sanidad/Paginas/Publicaciones.aspx

  • Garnas JR, Hurley BP, Slippers B, Wingfield MJ (2012) Biological control of forest plantation pests in an interconnected world requires greater international focus. Int J Pest Manag 58(3):211–223. https://doi.org/10.1080/09670874.2012.698764

    Article  Google Scholar 

  • Gómez D (2016) Manejo de escarabajos de corteza. In: Gómez D (ed) Situación actual de la investigación en escolítidos en plantaciones forestales del Uruguay. INIA, Montevideo, pp 59–61

    Google Scholar 

  • Gómez D, Hirigoyen A (2016) Evaluación de metodologías alternativas en el monitoreo de escolítidos de pino. In: Gómez D (ed) Situación actual de la investigación en escolítidos en plantaciones forestales del Uruguay. INIA, Montevideo, pp 49–57

    Google Scholar 

  • Gómez D, Martínez G, Beaver RA (2012) First record of Cyrtogenius luteus (Blandford) (Coleoptera: Curculionidae: Scolytinae) in the Americas and its distribution in Uruguay. Coleopt Bull 66(4):362–364. https://doi.org/10.1649/072.066.0414

    Article  Google Scholar 

  • Gómez D, Reyna R, Pérez C, Martínez G (2013) First record of Xyleborinus saxesenii (Ratzeburg) (Coleoptera: Curculionidae: Scolytinae) in Uruguay. Coleopt Bull 67(4):536–538

    Article  Google Scholar 

  • Gómez D, Suárez M, Martínez G (2017) Amasa truncata (Erichson) (Coleoptera: Curculionidae: Scolytinae): a new exotic ambrosia beetle in Uruguay. Coleopt Bull 71(4):825–826. https://doi.org/10.1649/0010-065X-71.4.825

    Article  Google Scholar 

  • González Parodi E, Nosei Canavesi G (1997) Detección y evaluación de la población de Sirex noctilio F. (Hymenoptera: Siricidae) y sus enemigos naturales, en rodales de Pinos, en San Gregorio de Polanco (Tacuarembó) (Grado). Universidad de la República, Facultad de Agronomía, Departamento de Producción Forestal y Tecnología de la Madera

    Google Scholar 

  • González A, Savornin P, Amaral L (2010) Control biológico del Gonipterus scutellatus por Anaphes nitens en Uruguay. Serie Actividades de Difusión 629:25–32

    Google Scholar 

  • Hajek AE (2004) Natural enemies: an introduction to biological control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hanks LM, Paine TD, Millar JG (1991) Mechanisms of resistance in Eucalyptus against larvae of the Eucalyptus Longhorned Borer (Coleoptera: Cerambycidae). Environ Entomol 20(6):1583–1588. https://doi.org/10.1093/ee/20.6.1583

    Article  Google Scholar 

  • Hanks LM, Paine TD, Millar JG (1996) Tiny wasp helps protect eucalypts from eucalyptus longhorned borer. Calif Agric 50:14–16

    Article  Google Scholar 

  • Hanks LM, Millar JG, Paine TD, Wang Q, Paine EO (2001) Patterns of host utilization by two parasitoids (Hymenoptera: Braconidae) of the Eucalyptus longhorned borer (Coleoptera: Cerambycidae). Biol Control 21(2):152–159

    Article  Google Scholar 

  • Hokkanen HMT, Sailer RI (1985) Success in classical biological control. Crit Rev Plant Sci 3:35–72

    Article  Google Scholar 

  • Hokkanen HMT, Lynch JM (2003) Biological control: benefits and risks. Cambridge University Press, Cambridge, 328 pp.

    Google Scholar 

  • Huang HT, Yang P (1987) The Ancient Cultured Citrus Ant. BioScience 37:665–671

    Article  Google Scholar 

  • Humble L (2010) Pest risk analysis and invasion pathways-insects and wood packing revisited: what have we learned. N Z J For Sci 40(Suppl). http://www.scionresearch.com/__data/assets/pdf_file/0017/17090/NZJFS40Suppl.2010S57-S72HUMBLE.pdf

  • Instituto Cuesta Duarte (2018) El sector forestal en Uruguay y la inversión extranjera. Impactos en materia de empleo, salario y condiciones de trabajo, pp 1–46. https://medios.presidencia.gub.uy/tav_portal/2019/noticias/AD_336/10.%20Informe%20SASK%20-%20Versi%C3%B3n%20final.pdf

  • Jorge C (2013) Comparación de la araneofauna de un cultivo de pino (Pinus taeda) con la matriz de campo natural (Tesis de Maestría en Ciencias Biológicas, Opción Zoología). Programa de Desarrollo de las Ciencias Básicas (PEDECIBA). Universidad de la República, Montevideo

    Google Scholar 

  • Jorge C, Martínez G, Gómez D, Bollazzi M (2016) First record of the eucalypt gall-wasp Leptocybe invasa (Hymenoptera: Eulophidae) from Uruguay. Bosque 37(3):631–636. https://doi.org/10.4067/S0717-92002016000300020

    Article  Google Scholar 

  • Kenis M, Hurley BP, Hajek AE, Cock MJW (2017) Classical biological control of insect pests of trees: facts and figures. Biol Invasions 19(11):3401–3417. https://doi.org/10.1007/s10530-017-1414-4

    Article  Google Scholar 

  • Klapwijk MJ, Bylund H, Schroeder M, Björkman C (2016) Forest management and natural biocontrol of insect pests. Forestry:cpw019

    Google Scholar 

  • Ley Forestal (1987) Public Law 15939. https://www.impo.com.uy/bases/leyes/15939-1987

  • Liebhold AM, Brockerhoff EG, Nuñez MA (2017) Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration. Biol Invasions 19(11):3073–3077. https://doi.org/10.1007/s10530-017-1547-5

    Article  Google Scholar 

  • Listre A (2018) Forrajeo de cebos tóxicos por hormigas cortadoras de hojas del género Acromyrmex Mayr, 1865 (Hymenoptera, Formicidae). Master Thesis, Universidad de la República, Facultad de Agronomía, Departamento de Producción Forestal y Tecnología de la Madera, Montevideo

    Google Scholar 

  • Luhring KA, Paine TD, Millar JG, Hanks LM (2000) Suitability of the eggs of two species of Eucalyptus longhorned borers (Phoracantha recurva and P. semipunctata) as hosts for the encyrtid parasitoid Avetianella longoi. Biol Control 19(2):95–104. https://doi.org/10.1006/bcon.2000.0853

    Article  Google Scholar 

  • Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini): resolving the Gonipterus scutellatus complex. Aust J Entomol 51(3):175–188. https://doi.org/10.1111/j.1440-6055.2011.00853.x

    Article  Google Scholar 

  • Masson MV, Tavares W de S, Lopes F de A, Souza AR de, Ferreira-Filho PJ, Barbosa LR, Wilcken CF, Zanuncio JC (2017) Selitrichodes neseri (Hymenoptera: Eulophidae) Recovered from Leptocybe invasa (Hymenoptera: Eulophidae) Galls After Initial Release on Eucalyptus (Myrtaceae) in Brazil, and Data on Its Biology. Fla Entomol 100:589–593

    Article  Google Scholar 

  • Martínez G (2010) Insectos plaga en plantaciones jóvenes de eucalipto: Hacia un modelo. Serie Actividades de Difusión 629:9–24

    Google Scholar 

  • Martínez G (ed) (2017) La chinche del eucalipto Thaumastocoris peregrinus. Biología y manejo regional de una plaga forestal invasiva. INIA, Montevideo

    Google Scholar 

  • Martínez G, Bianchi M (2010) Primer registro para Uruguay de la chinche del eucalipto, Thaumastocoris peregrinus Carpintero y Dellapé, 2006 (Heteroptera: Thaumastocoridae). Agrociencia 14(1):15–18

    Google Scholar 

  • Martínez AS, Fernández-Arhex V, Corley JC (2006) Chemical information from the fungus Amylostereum areolatum and host-foraging behaviour in the parasitoid Ibalia leucospoides. Physiol Entomol 31(4):336–340. https://doi.org/10.1111/j.1365-3032.2006.00523.x

    Article  Google Scholar 

  • Martínez G, Gómez D, Taylor GS (2014a) First record of the Australian psyllid Blastopsylla occidentalis Taylor (Hemiptera, Psylloidea) from Uruguay. Trans R Soc S Aust 138(2):231–236

    Google Scholar 

  • Martínez G, López L, Cantero G, González A, Dicke M (2014b) Life-history analysis of Thaumastocoris peregrinus in a newly designed mass rearing strategy. Bull Insectol 67(2):199–205

    Google Scholar 

  • Martínez G, Finozzi MV, Cantero G, Soler R, Dicke M, González A (2017) Oviposition preference but not adult feeding preference matches with offspring performance in the bronze bug Thaumastocoris peregrinus. Entomol Exp Appl 163(1):101–111. https://doi.org/10.1111/eea.12554

    Article  CAS  Google Scholar 

  • Martínez G, González A, Dicke M (2018a) Rearing and releasing the egg parasitoid Cleruchoides noackae, a biological control agent for the Eucalyptus bronze bug. Biol Control 123:97–104

    Article  Google Scholar 

  • Martínez G, González A, Dicke M (2018b) Effect of the eucalypt lerp psyllid Glycaspis brimblecombei on adult feeding, oviposition-site selection, and offspring performance of the bronze bug, Thaumastocoris peregrinus. Entomol Exp Appl 166(5):395–401. https://doi.org/10.1111/eea.12645

    Article  CAS  Google Scholar 

  • Martínez G, Jorge C, Escudero P, Martínez Haedo J, de los Santos M, Scoz R (2019) Hacia un programa de control biológico de la avispa agalladora del eucalipto. Revista INIA 56:75–78

    Google Scholar 

  • Mascarin GM, Duarte V d S, Brandão MM, Delalibera Í Jr (2012) Natural occurrence of Zoophthora radicans (Entomophthorales: Entomophthoraceae) on Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), an invasive pest recently found in Brazil. J Invertebr Pathol 110(3):401–404. https://doi.org/10.1016/j.jip.2012.03.025

    Article  PubMed  Google Scholar 

  • Mason PG, Cock MJW, Barratt BIP, Klapwijk JN, van Lenteren JC, Brodeur J et al (2018) Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture. BioControl 63(1):149–154. https://doi.org/10.1007/s10526-017-9810-3

    Article  Google Scholar 

  • Mendel Z, Protasov A, La Salle J, Blumberg D, Brand D, Branco M (2017) Classical biological control of two Eucalyptus gall wasps; main outcome and conclusions. Biol Control 105:66–78. https://doi.org/10.1016/j.biocontrol.2016.11.010

    Article  Google Scholar 

  • Messing R, Brodeur J (2018) Current challenges to the implementation of classical biological control. BioControl 63(1):1–9. https://doi.org/10.1007/s10526-017-9862-4

    Article  CAS  Google Scholar 

  • Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA (2019) Common pathways by which non-native forest insects move internationally and domestically. J Pest Sci 92(1):13–27. https://doi.org/10.1007/s10340-018-0990-0

    Article  Google Scholar 

  • Moore J (1998) Control biológico en Sud África. Uruguay Forestal 17:8–11

    Google Scholar 

  • Morales Olmos V, Siry JP (2009) Economic impact evaluation of Uruguay forest sector development policy. J For 107(2):63–68

    Google Scholar 

  • Morales Olmos V, Ansuberro J, Pintos M, Pérez G, Olmos VM, Ansuberro J et al (2018) Panorama empresarial del sector forestal uruguayo productor de Eucalyptus globulus. Agrociencia Uruguay 22(1):133–139. https://doi.org/10.31285/agro.22.1.14

    Article  Google Scholar 

  • Morey CS (1993) Detección y control de Sirex noctilio en Uruguay. Uruguay Forestal 6:6–9

    Google Scholar 

  • Morey CS, Porcile JF (2002) Aspectos fitosanitarios del desarrollo forestal en Uruguay: Antecedentes históricos y una década de sucesos [Informe técnico]. MGAP-DGF, Montevideo, pp 1–33

    Google Scholar 

  • Morey CS, Terra AL, Frioni MI (2001) Identificación de los taladros del eucalipto Phoracantha semipunctata (F.) y P. recurva (N.) (Coleoptera: Cerambycidae). Uruguay Forestal 26:4–7

    Google Scholar 

  • Morey CS, Terra A, Frioni I (2002) Establecimiento de Psyllaephagus pilosus (Hymenoptera: Encyrtidae) en Uruguay. Forestal. Revista de la Sociedad de Productores Forestales de Uruguay 17:28–30

    Google Scholar 

  • Nadel RL, Wingfield MJ, Scholes MC, Lawson SA, Slippers B (2012) The potential for monitoring and control of insect pests in Southern Hemisphere forestry plantations using semiochemicals. Ann For Sci 69(7):757–767. https://doi.org/10.1007/s13595-012-0200-9

    Article  Google Scholar 

  • OPYPA-MGAP (2018) Anuario OPYPA 2018. Montevideo, pp 1–667

    Google Scholar 

  • Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201

    Article  CAS  PubMed  Google Scholar 

  • Penteado SRC, Oliveira EB, Iede ET (2008) Utilizaçao da amostragem seqüencial para avaliar a eficiência do parasitismo de Deladenus (Beddingia) siricidicola (Nematoda: Neotylenchidae) em adultos de Sirex noctilio (Hymenoptera: Siricidae). Ciência Florestal 18(2):223–231

    Article  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15(3):133–144. https://doi.org/10.1016/j.tplants.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  • Porcile JF (1992) El taladro del eucalipto Phoracantha semipunctata F. Uruguay Forestal 3:16–18

    Google Scholar 

  • Porcile JF (1996) Manejo integrado de plagas. Uruguay Forestal 12:16–17

    Google Scholar 

  • Porcile JF (1998) Ctenarytaina eucalypti (Maskell) Homoptera, Psyllidae. Uruguay Forestal 19:26

    Google Scholar 

  • Protasov A, Blumberg D, Brand D, La Salle J, Mendel Z (2007) Biological control of the eucalyptus gall wasp Ophelimus maskelli (Ashmead): taxonomy and biology of the parasitoid species Closterocerus chamaeleon (Girault), with information on its establishment in Israel. Biol Control 42(2):196–206. https://doi.org/10.1016/j.biocontrol.2007.05.002

    Article  Google Scholar 

  • Quang Thu P, Dell B, Burgess TI (2009) Susceptibility of 18 eucalypt species to the gall wasp Leptocybe invasa in the nursery and young plantations in Vietnam. ScienceAsia 35(2):113–117

    Article  Google Scholar 

  • Rebuffo S (1990) La “Avispa de la Madera” Sirex noctilio F. en el Uruguay. MGAP, Montevideo

    Google Scholar 

  • Ruffinelli A, Carbonell CS (1954) Segunda lista de insectos y otros artrópodos de importancia económica en el Uruguay. Universidad de la República, Facultad de Agronomía, Montevideo

    Google Scholar 

  • Seaton S, Matusick G, Ruthrof KX, Hardy GESJ (2015) Outbreak of Phoracantha semipunctata in response to severe drought in a Mediterranean Eucalyptus Forest. Forests 6(11):3868–3881. https://doi.org/10.3390/f6113868

    Article  Google Scholar 

  • Shields MW, Johnson AC, Pandey S, Cullen R, González-Chang M, Wratten SD, Gurr GM (2019) History, current situation and challenges for conservation biological control. Biol Control 131:25–35. https://doi.org/10.1016/j.biocontrol.2018.12.010

    Article  Google Scholar 

  • Simeto S, Lupo S, Bettucci L, Pérez C, Gómez D, Torres D et al (2012) Desarrollo de bioinsecticidas (hongos entomopatógenos) para el control de la chinche del eucalipto Thaumastocoris peregrinus (Núm. 703; p. 8). INIA, Tacuarembó

    Google Scholar 

  • Simeto S, Gómez D, Martínez G, Balmelli G (2017) Nuevo módulo de consulta de la aplicación P-FOR INIA: el avance de una herramienta interactiva. Revista INIA 49:38–39

    Google Scholar 

  • Simó M, Laborda A, Jorge C, Castro M (2011) Las arañas en agroecosistemas: Bioindicadores terrestres de calidad ambiental. INNOTEC 6:51–55

    Google Scholar 

  • Slippers B, Hurley BP, Wingfield MJ (2015) Sirex Woodwasp: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60(1):601–619. https://doi.org/10.1146/annurev-ento-010814-021118

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Hinz H, Mulema J, Weyl P, Ryan MJ (2018) Biological control and the Nagoya Protocol on access and benefit sharing—a case of effective due diligence. Biocontrol Sci Technol 28(10):914–926. https://doi.org/10.1080/09583157.2018.1460317

    Article  Google Scholar 

  • Talbot PHB (1977) The Sirex-Amylostereum-Pinus association. Annu Rev Phytopathol 15:41–54

    Article  Google Scholar 

  • Tellechea N (1999) Intercambio de controladores biológicos con la República de Sudáfrica. Uruguay Forestal 20:10–11

    Google Scholar 

  • Tellechea N (2008 febrero 18) Personal interview [Recorded]

    Google Scholar 

  • Tiscornia S, Lupo S, Corallo B, Sánchez A, Bettucci L (2014) Neotropical leaf-cutting ants (Acromyrmex spp.): biological control under laboratory and field conditions. Trends Entomol 10:55–62

    Google Scholar 

  • Torres D, Martínez G, Pérez G (2013) Una nueva oferta en servicios tecnológicos: Centro de Bioservicios Forestales (CEBIOF). Revista INIA 33:60–62

    Google Scholar 

  • Trujillo A (1963) Breve historia entomológica uruguaya. C&Cia, Montevideo

    Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63(1):39–59. https://doi.org/10.1007/s10526-017-9801-4

    Article  Google Scholar 

  • Wang Q (1995) A taxonomic revision of the Australian genus Phoracantha Newman (Coleoptera: Cerambycidae). Invertebr Syst 9:865. https://doi.org/10.1071/IT9950865

    Article  Google Scholar 

  • Watt MS, Kirschbaum MUF, Moore JR, Pearce HG, Bulman LS, Brockerhoff EG, Melia N (2019) Assessment of multiple climate change effects on plantation forests in New Zealand. Forestry 92(1):1–15. https://doi.org/10.1093/forestry/cpy024

    Article  Google Scholar 

  • Willoughby I, Wilcken CF, Ivey P, O’Grady K, Katto F (2009) FSC Guide to integrated pest, disease and weed management in FSC certified forests and plantations (FSC Technical Series Núm. 2009–001; p 19). Recuperado de Forest Stewardship Council website: www.fsc.oeg

  • Wingfield MJ, Slippers B, Hurley B, Coutinho T, Wingfield B, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For J For Sci 70(2):139–144. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.9.537

    Article  Google Scholar 

  • Yemshanov D, Koch FH, Ben-Haim Y, Smith WD (2010) Detection capacity, information gaps and the design of surveillance programs for invasive forest pests. J Environ Manag 91(12):2535–2546. https://doi.org/10.1016/j.jenvman.2010.07.009

    Article  Google Scholar 

Download references

Acknowledgements

The author wants to thank the collaboration of the representatives of the CECOPE, providing public information and private reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, G. (2020). Biological Control of Forest Pests in Uruguay. In: Estay, S. (eds) Forest Pest and Disease Management in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-35143-4_2

Download citation

Publish with us

Policies and ethics