Skip to main content
  • 869 Accesses

Abstract

Effectively sharing resources requires solving complex decision problems. This requires constructing a mathematical model of the underlying system, and then applying appropriate mathematical methods to find an optimal solution of the model, which is ultimately translated into actual decisions. The development of mathematical tools for solving optimization problems dates back to Newton and Leibniz, but it has tremendously accelerated since the advent of digital computers. Today, optimization is an inter-disciplinary subject, lying at the interface between management science, computer science, mathematics and engineering. This chapter offers an introduction to the main theoretical and software tools that are nowadays available to practitioners to solve the kind of optimization problems that are more likely to be encountered in the context of this book. Using, as a case study, a simplified version of the bike sharing problem, we guide the reader through the discussion of modelling and algorithmic issues, concentrating on methods for solving optimization problems to proven optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller C, Tucker A, Zemlin R (1960) Integer programming formulations and traveling salesman problems. J Assoc Comput Mach 7:32–329

    Article  MathSciNet  Google Scholar 

  2. Toth P, Vigo D (eds) (2002) The vehicle routing problem. SIAM

    Google Scholar 

  3. Toth P, Vigo D (eds) (2014) Vehicle routing: problems, methods, and applications. SIAM

    Google Scholar 

  4. Wolsey LA, Nemhauser GL (1999) Integer and combinatorial optimization. Wiley

    Google Scholar 

  5. Lee J, Leyffer S (Eds) (2012) Mixed integer nonlinear programming. The IMA volumes in mathematics and its applications. Springer

    Google Scholar 

  6. Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column generation. Springer

    Google Scholar 

  7. Conforti M, Cornuejols G, Zambelli G (2014) Integer programming. Springer

    Google Scholar 

  8. Korte B, Vygen J (2018) Combinatorial optimization—theory and algorithms. Springer

    Google Scholar 

  9. Fliege J, Kaparis K, Khosravi B (2012) Operations research in the space industry. Eur J Oper Res 217(2):233–240

    Article  MathSciNet  Google Scholar 

  10. Galli L (2011) Combinatorial and robust optimisation models and algorithms for railway applications. 4OR 9(2):215–218

    Google Scholar 

  11. Boyd S, Vandenberghe L (1997) Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization. In: Paulraj A, Roychowdhuri V, Schaper C (eds) Communications, computation, control and signal processing. Kluwer, pp 279–288

    Google Scholar 

  12. van Ackooij W, Lopez ID, Frangioni A, Lacalandra F, Tahanan M (2018) Large-scale unit commitment under uncertainty: an updated literature survey. Ann OR 271(1):11–85

    Article  MathSciNet  Google Scholar 

  13. Frangioni A, Galli L, Stea G (2014) Optimal joint path computation and rate allocation for real-time traffic. Comput J 58(6):1416–1430

    Article  Google Scholar 

  14. AMPL. https://ampl.com/

  15. GAMS. https://www.gams.com/

  16. Coliop. http://www.coliop.org/

  17. ZIMPL. http://zimpl.zib.de/

  18. FlopC++. https://projects.coin-or.org/FlopC++

  19. PuLP. https://pythonhosted.org/PuLP/

  20. Pyomo. http://www.pyomo.org/

  21. JuMP. https://github.com/JuliaOpt/JuMP.jl/

  22. YALMIP. https://yalmip.github.io/

  23. MPS. http://lpsolve.sourceforge.net/5.0/mps-format.htm

  24. LP. http://lpsolve.sourceforge.net/5.1/lp-format.htm

  25. Cplex. https://www.ibm.com/analytics/cplex-optimizer

  26. GuRoBi. http://www.gurobi.com/

  27. MOSEK. https://www.mosek.com/

  28. Cbc. https://projects.coin-or.org/Cbc

  29. SCIP. http://scip.zib.de/

  30. LocalSolver. http://www.localsolver.com/

  31. COIN-Reharse. https://github.com/coin-or/Rehearse

Download references

Acknowledgements

The first author acknowledge the financial support of the University of Pisa under the grant PRA_2017_33 “Distretti urbani a zero impatto energetico ed ambientale”. The authors acknowledge the financial support of the Italian Ministry for Education, Research and University (MIUR) under the project PRIN 2015B5F27W “Nonlinear and Combinatorial Aspects of Complex Networks” and of the Europeans Union’s EU Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie Actions Grant Agreement No 764759 “MINOA – Mixed-Integer Non Linear Optimisation: Algorithms and Applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Galli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frangioni, A., Galli, L. (2020). Optimization Methods: An Applications-Oriented Primer. In: Crisostomi, E., Ghaddar, B., Häusler, F., Naoum-Sawaya, J., Russo, G., Shorten, R. (eds) Analytics for the Sharing Economy: Mathematics, Engineering and Business Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-030-35032-1_2

Download citation

Publish with us

Policies and ethics