Skip to main content

Methods to Assess Biological Transformation of Biomass

  • Chapter
  • First Online:
Handbook on Characterization of Biomass, Biowaste and Related By-products

Abstract

The aim of this chapter is to provide a description of the main methods used to assess biological transformation of biomass. It will address saccharification tests which account for the ability of biomass to release sugars during enzymatic hydrolysis. Biochemical methane potential (BMP) tests, which are widely used to assess anaerobic digestibility of biomass for the production of methane and BMP prediction by near infra-red spectroscopy will be presented. Biohydrogen potential (BHP), used to assess the ability to produce biohydrogen from biomass by dark fermentation will be described. Respirometry tests accounting for assessing aerobic degradability of biomass will be described. Incubation tests used to assess carbon and nitrogen degradation in soils will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007)

    Article  CAS  Google Scholar 

  2. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S.: A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206 (2017)

    Article  CAS  Google Scholar 

  3. Alexandropoulou, M., Antonopoulou, G., Fragkou, E., Ntaikou, I., Lyberatos, G.: Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J. Environ. Manage. 203, 704–713 (2017)

    Article  CAS  Google Scholar 

  4. Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Sadler, J.N.: Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson, L. (ed.) Biofuels, pp. 67–93. Springer, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Fountoulakis, M.S., Dokianakis, S.N., Kornaros, M.E., Aggelis, G.G., Lyberatos, G.: Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 36, 4735–4744 (2002)

    Article  CAS  Google Scholar 

  6. Maxwell, K.: Cationic polymer enhanced hydrolysis of cornstarch for the production of biofuels. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology (2012)

    Google Scholar 

  7. Taherzadeh, M.J., Karimi, K.: Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2, 707–738 (2007)

    CAS  Google Scholar 

  8. Zhang, Y.H., Lynd, L.R.: Towards and aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. Biotechnol. Bioeng. 88, 797–824 (2004)

    Article  CAS  Google Scholar 

  9. Foreman, P.K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N.S., Goedegebuur, F., Houfek, T.D., England, G.J., Kelley, A.S., Meerman, H.J., Mitchell, T., Mitchinson, C., Olivares, H.A., Teunissen, P.J., Yao, J., Ward, M.: Tran-scriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278, 31988–31997 (2003)

    Article  Google Scholar 

  10. Jørgensen, H., Kristensen, J.B., Felby, C.: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Bioref. 1, 119–134 (2007)

    Article  CAS  Google Scholar 

  11. Rosgaard, L., Pedersen, S., Langston, J., Akerhielm, D., Cherry, J.R., Meyer, A.S.: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol. Prog. 23, 1270–1276 (2007)

    Article  CAS  Google Scholar 

  12. Kumar, D., Murthy, G.S.: Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol. Biofuels 2, 63 (2013)

    Article  CAS  Google Scholar 

  13. Camassola, M.: Cellulases and hemicellulases, why we need so much of these enzymes?. Ferment. Technol., 2 (2012)

    Google Scholar 

  14. Dokic, P., Jakovljevic, J., Dokic-Baucal, L.: Molecular characteristics of maltodextrins and rheological behaviour of diluted and concentrated solutions. Colloids Surf. A: Physicochem. Eng. Aspects 141, 435–440 (1998)

    Article  CAS  Google Scholar 

  15. Liu, Z.A., Zhang, F.S.: Effect of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energ. Convers. Manage. 49, 3498–3504 (2008)

    Article  CAS  Google Scholar 

  16. Yunianta, N.H., Fithri, C.N., Mubarok, A.Z., Wulan, S.N.: Variations in dextrose equivalent and dynamic rheology of dextrin obtained by enzymatic hydrolysis of edible canna starch. Int. J. Food Prop. 18, 2726–2734 (2015)

    Article  CAS  Google Scholar 

  17. Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., Templeton, D.: Preparation of samples for compositional analysis. in: laboratory analytical procedure (LAP). National Renewable Energy Laboratory (2008)

    Google Scholar 

  18. Kennedy, J.F., Cabalda, V.M., White, C.A.: Enzymic starch utilization and genetic engineering. Trends Biotechnol. 6, 184–189 (1988)

    Article  CAS  Google Scholar 

  19. Synowiecki, J.: The use of starch processing enzymes in the food industry. In: Polaina, J., MacCabe, A.P. (eds.) Industrial Enzymes. Springer, Dordrecht (2007)

    Google Scholar 

  20. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Wolfe, J.: Determination of total solids in biomass and total dissolved solids in liquid process samples. In: Laboratory Analytical Procedure (LAP) (Ed.), National Renewable Energy Laboratory (2008)

    Google Scholar 

  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of ash in biomass. In: Laboratory Analytical Procedure (LAP) (Ed.), National Renewable Energy Laboratory (2005)

    Google Scholar 

  22. Hames, B., Scarlata, C., Sluiter, A.: Determination of protein content in biomass. In: Laboratory Analytical Procedure (LAP) (Ed.), National Renewable Energy Laboratory (2008)

    Google Scholar 

  23. Agblevor, F.A., Pereira, J.: Progress in the summative analysis of biomass feedstocks for biofuels production. In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, pp. 335–354. Wiley (2013)

    Google Scholar 

  24. Burkhardt, S., Kumar, L., Chandra, R., Saddler, J.: How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues? Biotechnol. Biofuels 6, 1754–6834 (2013)

    Article  Google Scholar 

  25. Karimi, K., Taherzadeh, M.J.: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Biores. Technol. 200, 1008–1018 (2016)

    Article  CAS  Google Scholar 

  26. Theander, O., Aman, P., Westerlund, E., Andersson, R., Petersson, D.: Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason Lignin (The Uppsala method): collaborative study. J. AOAC Int. 78, 1030–1044 (1995)

    Article  CAS  Google Scholar 

  27. Sluiter, R., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. In: Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory (2012)

    Google Scholar 

  28. Sluiter, R., Ruiz, R., Sluiter, J., Templeton, D.: Determination of extractives in biomass. In: Laboratory Analytical Procedure (LAP) (Ed.), National Renewable Energy Laboratory (2008)

    Google Scholar 

  29. Noori, M.S., Karimi, K.: Detailed study of efficient ethanol production from elmwood by alkali pretreatment. Biochem. Eng. J. 105, 197–204 (2016)

    Article  CAS  Google Scholar 

  30. Roche, C.M., Dibble, C.J., Stickel, J.J.: Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol. Biofuels 2, 28 (2009)

    Article  CAS  Google Scholar 

  31. Fenila, F., Shastri, Y.: Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resour. Effi. Technol. 2, S96–S104 (2016)

    Google Scholar 

  32. Novozymes Bioenergy.: Novozymes cellulosic ethanol enzyme kit, Enzymes for the hydrolysis of lignocellulosic materials. http://www.bdigital.unal.edu.co/46027/2/2822323.2014%20Anexo.pdf

  33. Dashtban, M., Maki, M., Leung, K.T., Mao, C., Qin, W.: Cellulase activities in bio-mass conversion: measurement methods and comparison. Crit. Rev. Biotechnol., 1–8 (2010)

    Google Scholar 

  34. Mandels, M., Andreotti, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Bioeng. Symp. 6, 21–33 (1976)

    CAS  Google Scholar 

  35. Ghose, T.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Article  CAS  Google Scholar 

  36. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  CAS  Google Scholar 

  37. Wood, T.M., Bhat, K.M.: Methods for measuring cellulase activities. Methods Enzymol. 160, 87–117 (1988)

    Article  CAS  Google Scholar 

  38. Adney, B., Baker, J.: Measurement of cellulase activities. In: Laboratory Analytical Procedure (LAP) (Ed.), National Renewable Energy Laboratory (1996)

    Google Scholar 

  39. Trinder, P.: Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J. Clin. Pathol. 22, 246 (1969)

    Article  CAS  Google Scholar 

  40. Chandra, M., Kalra, A., Sharma, P.K., Sangwan, R.S.: Cellulase production by six Trichoderma spp. fermented on medicinal plant processing. J. Ind. Microbiol. Biotechnol. 36, 605–609 (2009)

    Article  CAS  Google Scholar 

  41. Kubicek, C.P.: Beta-glucosidase excretion by Trichoderma pseudokoningii: correlation with cell wall bound beta-1.3-glucanase activities. Arch. Microbiol. 132, 349–354 (1982)

    Article  CAS  Google Scholar 

  42. Morrison, W.R., Laignelet, B.: An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1, 9–20 (1983)

    Article  CAS  Google Scholar 

  43. Kaufman, R.C., Wilson, J.D., Bean, S.R., Herald, T.J., Shi, Y.C.: Development of a 96-well plate iodine binding assay for amylose content determination. Carbohydr. Polym. 115, 444–447 (2015)

    Article  CAS  Google Scholar 

  44. McGrance, S.J., Cornell, H.J., Rix, C.J.: A simple and rapid colorimetric method for the determination of amylose in starch products. Starch/Stärke 50, 158–163 (1998)

    Article  CAS  Google Scholar 

  45. Bansal, P., Hall, M., Realff, M.J., Lee, J.H., Bommarius, A.S.: Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv. 27, 833–848 (2009)

    Article  CAS  Google Scholar 

  46. Gharpuray, M.M., Lee, Y.H., Fan, L.T.: Structural modification of lignocellulosic by pretreatments to enhance enzymatic hydrolysis. Biotechnol. Bioeng. 25, 157–172 (1983)

    Article  CAS  Google Scholar 

  47. Kadam, K.L., Rydholm, E.C., McMil, J.D.: Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol. Prog. 20, 698–705 (2004)

    Article  CAS  Google Scholar 

  48. Tsai, C.T., Meyer, A.S., Johansen, K.S.: Bioethanol from lignocellulose—pretreatment, enzyme immobilization and hydrolysis kinetics. Technical University of Denmark (DTU) (2012)

    Google Scholar 

  49. Zheng, Y., Pan, Z., Zhang, R., Jenkins, B.M.: Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass. Biotechnol. Bioeng. 102, 1558–1569 (2009)

    Article  CAS  Google Scholar 

  50. Besselink, T., Baks, T., Janssen, A., Boom, R.: A stochastic model for predicting dextrose equivalent and sac-charide composition during hydrolysis of starch by alpha-amylase. Biotechnol. Bioeng. 100, 684–697 (2008)

    Article  CAS  Google Scholar 

  51. Marchal, L.: Towards a rational design of commercial maltodextrins: a mechanistic approach, p. 197. Wageningen University (1999)

    Google Scholar 

  52. Paolucci-Jeanjean, D., Belleville, M.P., Zakhia, N., Rios, G.M.: Kinetics of cassava starch hydrolysis with Termamyl® enzyme. Biotechnol. Bioeng. 68, 71–77 (2000)

    Article  CAS  Google Scholar 

  53. Torgerson, E.M., Brewer, L.C., Thoma, J.A.: Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate. Arch Biochem Biophys 196, 13–22 (1979)

    Article  CAS  Google Scholar 

  54. Wojciechowski, P.M., Koziol, A., Noworyta, A.: Iteration model of starch hydrolysis by amylolytic enzymes. Biotechnol. Bioeng. 75, 530–539 (2001)

    Article  CAS  Google Scholar 

  55. Kandra, L., Gyémánt, G., Remenyik, J., Hovánszki, G., Lipták, A.: Action pattern and subsite mapping of Bacillus licheniformis a-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett. 518, 79–82 (2002)

    Article  CAS  Google Scholar 

  56. Allen, J.D., Thoma, J.A.: Subsite mapping of enzymes: application of the depolymerase computer model to two a-amylases. Biochem. J. 159, 121–132 (1976)

    Article  CAS  Google Scholar 

  57. MacGregor, E.A., MacGregor, A.W.: A model for the action of cereal alpha amylases on amylose. Carbohydr. Res. 142, 223–236 (1985)

    Article  CAS  Google Scholar 

  58. McCarty, P.L.: One-hundred years of anaerobic treatment. In: Hughes, D.E. (ed.) Anaerobic Digestion, pp. 3–22. Elsevier, Amsterdam (1982)

    Google Scholar 

  59. Adib, R.: Renewables 2015 global energy report. In: Ren21 (2015)

    Google Scholar 

  60. EU: A Policy Framework for Climate and Energy in the Period from 2020 to 2030 (2014)

    Google Scholar 

  61. EU: Directive 2009/28/EC of the European Parliament and the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending (2009)

    Google Scholar 

  62. Schievano, A., D’Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., Adani, F.: Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Biores. Technol. 101, 5728–5732 (2010)

    Article  CAS  Google Scholar 

  63. Kafle, G.K., Chen, L.D.: Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 48, 492–502 (2016)

    Article  CAS  Google Scholar 

  64. Nielfa, A., Cano, R., Fdz-Polanco, F.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Bio-technol. Rep. 5, 14–21 (2015)

    CAS  Google Scholar 

  65. Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979)

    Article  CAS  Google Scholar 

  66. Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W.: Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg. 5, 95–111 (1993)

    Article  CAS  Google Scholar 

  67. Owens, J.M., Chynoweth, D.P.: Biochemical methane potential of municipal solid-waste (MSW) components. Water Sci. Technol. 27, 1–14 (1993)

    Article  CAS  Google Scholar 

  68. Sanders, W., Angelidaki, I.: Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3, 117–129 (2004)

    Article  Google Scholar 

  69. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)

    Article  CAS  Google Scholar 

  70. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffiere, P., Carballa, M., et al.: Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522 (2016)

    Article  CAS  Google Scholar 

  71. Raposo, F., Fernandez-Cegri, V., De la Rubia, M.A., Borja, R., Beline, F., Cavinato, C., Demirer, G., Fernandez, B., et al.: Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86, 1088–1098 (2011)

    Article  CAS  Google Scholar 

  72. Hafner, S.D., Rennuit, C., Triolo, J.M., Richards, B.K.: Validation of a simple gravimetric method for measuring biogas production in laboratory experiments. Biomass Bioenerg. 83, 297–301 (2015)

    Article  CAS  Google Scholar 

  73. Hafner, S.D., Rennuit, C., Triolo, J.M., Azifehkhoran, A.: R package biogas: analyze biogas data and predict biogas production. https://cran.r-project.org/package=biogas (2015)

  74. Huang, H.B., Yu, H.Y., Xu, H.R., Ying, Y.B.: Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. J. Food Eng. 87, 303–313 (2008)

    Article  CAS  Google Scholar 

  75. Raju, C.S., Ward, A.J., Nielsen, L., Moller, H.B.: Comparison of near infra-red spectroscopy, neutral detergent fibre assay and in-vitro organic matter digestibility assay for rapid determination of the biochemical methane potential of meadow grasses. Biores. Technol. 102, 7835–7839 (2011)

    Article  CAS  Google Scholar 

  76. Fitamo, T., Triolo, J.M., Boldrin, A., Scheutz, C.: Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy. Water Res. 119, 242–251 (2017)

    Article  CAS  Google Scholar 

  77. Lesteur, M., Latrille, E., Maurel, V.B., Roger, J.M., Gonzalez, C., Junqua, G., Steyer, J.P.: First step towards a fast analytical method for the determination of bio-chemical methane potential of solid wastes by near infrared spectroscopy. Biores. Technol. 102, 2280–2288 (2011)

    Article  CAS  Google Scholar 

  78. Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., Rivero, J.A.C.: Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Biores. Technol. 128, 252–258 (2013)

    Article  CAS  Google Scholar 

  79. Lesteur, M., Preys, S., Boulanger, A., Latrille, E., Treguer, R.: Fast prediction of biochemical methane potential (BMP) of organic waste by near infrared spectroscopy. Picking up good vibrations. In: NIR2013. La Grande-Motte, France (2013)

    Google Scholar 

  80. Triolo, A.J., Ward, L., Pedersen, M.M., Lokke, H., Qu, S.G.: Sommer, near infrared reflectance spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Appl. Energy 116, 52–57 (2014)

    Article  CAS  Google Scholar 

  81. Charnier, C., Latrille, E., Jimenez, J., Lemoine, M., Boulet, J.C., Miroux, J., Steyer, J.P.: Fast characterization of solid organic waste content with near infrared spectroscopy in anaerobic digestion. Waste Manag. 59, 140–148 (2017)

    Article  CAS  Google Scholar 

  82. Charnier, C., Latrille, E., Jimenez, J., Torrijos, M., Sousbie, P., Miroux, J., Steyer, J.P.: Fast ADM1 implementation for the optimization of feeding strategy using near infrared spectroscopy. Water Res. 122, 27–35 (2017)

    Article  CAS  Google Scholar 

  83. Buswel, A.M., Sollo, F.W.: The mechanism of the methane fermentation. J. Am. Chem. Soc. 70(5), 1778–1780 (1948)

    Article  Google Scholar 

  84. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.P., Carrere, H.: Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46, 12217–12225 (2012)

    Article  CAS  Google Scholar 

  85. Donoso-Bravo, A., Perez-Elvira, S.I., Fdz-Polanco, F.: Application of simplified models for anaerobic biodegradability tests Evaluation of pre-treatment processes. Chem. Eng. J. 160, 607–614 (2010)

    Article  CAS  Google Scholar 

  86. Shen, J., Yan, H., Zhang, R.H., Liu, C.Q., Chen, C.: Characterization and methane production of different nut residue wastes in anaerobic digestion. Renew. Energy 116, 835–841 (2018)

    Article  CAS  Google Scholar 

  87. Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenes, J.P., Steyer, J.P., Escudie, R.: Total solids content drives high solid anaerobic digestion via mass transfer limitation. Biores. Technol. 111, 55–61 (2012)

    Article  CAS  Google Scholar 

  88. Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J.P.: Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrogen Energy 35, 10660–10673 (2010)

    Article  CAS  Google Scholar 

  89. Cazier, E.A., Trably, E., Steyer, J.P., Escudie, R.: Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Biores. Technol. 190, 106–113 (2015)

    Article  CAS  Google Scholar 

  90. Dincer, I., Acar, C.: Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40, 11094–11111 (2015)

    Article  CAS  Google Scholar 

  91. Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J.P.: Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int. J. Hydrogen Energy 39, 7476–7485 (2014)

    Article  CAS  Google Scholar 

  92. Cai, G.Q., Jin, B., Saint, C., Monis, P.: Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: effect of pH and glucose concentrations. Int. J. Hydrogen Energy 35, 6681–6690 (2010)

    Article  CAS  Google Scholar 

  93. Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L.: Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32, 172–184 (2007)

    Article  CAS  Google Scholar 

  94. Mohan, S.V., Babu, V.L., Sarma, P.N.: Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Biores. Technol. 99, 59–67 (2008)

    Article  CAS  Google Scholar 

  95. Logan, B.E., Oh, S.E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)

    Article  CAS  Google Scholar 

  96. Won, S.G., Lau, A.K.: Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor. Bioresour. Technol. 102(13), 6876–6883 (2011)

    Article  CAS  Google Scholar 

  97. Kim, D.H., Shin, H.S., Kim, S.H.: Enhanced H-2 fermentation of organic waste by CO2 sparging. Int. J. Hydrogen Energy 37, 15563–15568 (2012)

    Article  CAS  Google Scholar 

  98. Stumm, W., Morgan, J.: Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd edn. Wiley, New York (1996)

    Google Scholar 

  99. Ramirez-Morales, J.E., Tapia-Venegas, E., Toledo-Alarcon, J., Ruiz-Filippi, G.: Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci. Technol. 71, 1271–1285 (2015)

    Article  CAS  Google Scholar 

  100. Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Lyberatos, G.: Modeling of fermentative hydrogen production from sweet sorghum extract based on modified ADM1. Int. J. Hydrogen Energy 37, 191–208 (2012)

    Article  CAS  Google Scholar 

  101. Gavala, H.N., Skiadas, I.V., Ahring, B.K., Lyberatos, G.: Potential for biohydrogen and methane production from olive pulp. Water Sci. Technol. 52, 209–215 (2005)

    Article  CAS  Google Scholar 

  102. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposi-to, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015)

    Article  CAS  Google Scholar 

  103. Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valori. 1, 21–39 (2010)

    Article  CAS  Google Scholar 

  104. Boboescu, I.Z., Ilie, M., Gherman, V.D., Mirel, I., Pap, B., Negrea, A., Kondorosi, E., Biro, T., Maroti, G.: Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate. Biotechnol. Biofuels 7, 139 (2014)

    Article  CAS  Google Scholar 

  105. Akhlaghi, M., Boni, M.R., De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D.: A parametric response surface study of fermentative hydrogen production from cheese whey. Biores. Technol. 244, 473–483 (2017)

    Article  CAS  Google Scholar 

  106. Argun, H., Dao, S.: Bio-hydrogen production from waste peach pulp by dark fer-mentation: Effect of inoculum addition. Int. J. Hydrogen Energy 42, 2569–2574 (2017)

    Article  CAS  Google Scholar 

  107. Pan, J., Zhang, R., El-Mashad, H.M., Sun, H., Ying, Y.: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrogen Energy 33, 6968–6975 (2008)

    Article  CAS  Google Scholar 

  108. Argun, H., Kargi, F., Kapdan, I.K., Oztekin, R.: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentrations. Int. J. Hydrogen Energy 33, 6109–6115 (2008)

    Article  CAS  Google Scholar 

  109. Wang, J.L., Wan, W.: Kinetic models for fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 3313–3323 (2009)

    Article  CAS  Google Scholar 

  110. Yuan, X.Z., Shi, X.S., Zhang, P.D., Wei, Y.L., Guo, R.B., Wang, L.S.: Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence. Biores. Technol. 102, 9007–9012 (2011)

    Article  CAS  Google Scholar 

  111. Mu, Y., Yu, H.Q., Wang, G.: A kinetic approach to anaerobic hydrogen-producing process. Water Res. 41, 1152–1160 (2007)

    Article  CAS  Google Scholar 

  112. Alexandropoulou, M., Antonopoulou, G., Lyberatos, G.: A novel approach of modeling continuous dark hydrogen fermentation. Biores. Technol. 250, 784–792 (2018)

    Article  CAS  Google Scholar 

  113. Arudchelvam, Y., Perinpanayagam, M., Nirmalakhandan, N.: Predicting VFA formation by dark fermentation of particulate substrates. Biores. Technol. 101, 7492–7499 (2010)

    Article  CAS  Google Scholar 

  114. Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan, N., Johnson, D.C.: Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model. Int. J. Hydrogen Energy 35, 479–490 (2010)

    Article  CAS  Google Scholar 

  115. Pelmont, J.: Bactéries et Environnement: Adaptations physiologiques. Presses Universitaires de Grenoble, Grenoble (1993)

    Google Scholar 

  116. Bailey, J., Ollis, D.: Biochemical engineering fundamentals, 2nd edn. McGraw-Hill Book Co., Singapore (1986)

    Google Scholar 

  117. Spanjers, H., Vanrolleghem, P., Olsson, G., Dold, P.: Respirometry in Control of the Activated Sludge Process: Principles. International Association on Water Quality, London (1998)

    Google Scholar 

  118. Janning, K.: Hydrolysis and oxidation of particulate organic matter in biofilters. In: Environmental Science and Engineering. Technical University of Denmark (1998)

    Google Scholar 

  119. Aspray, T., Dimambro, M., Wallace, P., Howell, G., Frederickson, J.: Static, dynamic and inoculum augmented respiration based test assessment for determining in-vessel compost stability. Waste Manag. 42, 3–9 (2015)

    Article  CAS  Google Scholar 

  120. Barrena, R., d’Imporzano, G., Ponsa, S., Gea, T., Artola, A., Vasquez, F., Sanchez, A., Adani, F.: Search of a reliable technique for the determination of the bio-logical stability of the organic matter in the mechanical-biological treated waste. J. Hazard. Mater. 162, 1065–1072 (2009)

    Article  CAS  Google Scholar 

  121. Barrena, R., Turet, J., Busquets, A., Farrés, M., Font, X., Sanchez, A.: Respirometric screening of several types of manure and mixtures intended for composting. Biores. Technol. 102, 1367–1377 (2011)

    Article  CAS  Google Scholar 

  122. Barrena, R., Vasquez, F., Sanchez, A.: The use of respiration indices in the composting process: a review. Waste Manage. Res. 24, 37–47 (2006)

    Article  Google Scholar 

  123. Komilis, D., Kletsas, C.: Static respiration indices to investigate compost stability: effect of sample weight and temperature and comparison with dynamic respiration indices. Biores. Technol. 121, 467–470 (2012)

    Article  CAS  Google Scholar 

  124. Villasenor, J., Perez, M.A., Fernandez, F.J., Puchalski, C.M.: Monitoring respiration and biological stability during sludge composting with a modified dynamic respirometer. Biores. Technol. 102, 6562–6568 (2011)

    Article  CAS  Google Scholar 

  125. Adani, F., Gigliotti, G., Valentini, F., Laraia, R.: Respiration index determination: a comparative study of different methods. Compost Sci. Util. 11, 144–151 (2003)

    Article  Google Scholar 

  126. Lasaridi, K., Stentiford, E.: A simple respirometric technique for assessing compost stability. Water Res. 32, 3717–3723 (1998)

    Article  CAS  Google Scholar 

  127. Nikaeen, M., Nafez, A., Bina, B., Nabavi, B., Hassanzadeh, A.: Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manag. 39, 104–110 (2015)

    Article  CAS  Google Scholar 

  128. Ianotti, D., Grebus, M., Toth, B., Madden, L., Hoitink, H.: Oxygen respirometry to assess stability and maturity of composted municipal solid waste. J. Env. Qual. 23, 1177–1183 (1994)

    Article  Google Scholar 

  129. Barrena, R., Vasquez, F., Gordillo, M., Gea, T., Sanchez, A.: Respirometric assays at fixed and process temperatures to monitor composting process. Biores. Technol. 96, 1153–1159 (2005)

    Article  CAS  Google Scholar 

  130. Barrena, R., Gea, T., Ponsa, S., Ruggieri, L., Artola, A., Font, X., Sanchez, A.: Categorizing raw organic material biodegradability via respiration activity measurement: a review. Compost Sci. Util. 19, 105–113 (2011)

    Article  Google Scholar 

  131. Binner, E., Zack, A.: Laboratory tests describing the biological reactivity of pre-treated residual wastes. In: W. Bidlingmaier, M. de Bertoldi, L. Diaz, E. Papadimitriou (Eds.) Organic Recovery and Biological Treatment—ORBIT99, pp. 255–261. Weimar (1999)

    Google Scholar 

  132. Binner, E., Böhm, K., Lechner, P.: Large scale study on measurement of respiration activity (AT4) by Sapromat and OxiTop. Waste Manag. 32, 1752–1759 (2012)

    Article  CAS  Google Scholar 

  133. Changa, C., Wang, P., Watson, M., Hoitink, H., Michel, F.: Assessment of the reliability of a commercial maturity test kit for composted manures. Compost Sci. Util. 11, 125–143 (2003)

    Article  Google Scholar 

  134. Cossu, R., Raga, R.: Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 28, 381–388 (2008)

    Article  CAS  Google Scholar 

  135. Evangelou, A., Gerassimidou, S., Mavrakis, N., Komilis, D.: Monitoring the performances of a real scale municipal solid waste composting and a biodrying facility using respiration activity indices. Environ. Monit. Assess. 188, 302 (2016)

    Article  CAS  Google Scholar 

  136. Gea, T., Barrena, R., Artola, A., Sanchez, A.: Monitoring the biological activity of the composting process: oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ). Biotechnol. Bioeng. 88, 520–527 (2004)

    Article  CAS  Google Scholar 

  137. Komilis, D., Kontou, I., Ntougias, S.: A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Biores. Technol. 102, 5863–5872 (2011)

    Article  CAS  Google Scholar 

  138. Malinska, K.: Application of a modified OxiTop (R) respirometer for laboratory composting studies. Arch. Env. Protect. 42, 56–62 (2016)

    Article  Google Scholar 

  139. Oviedo-Ocana, E., Torres-Lozada, P., Mormolejo-Rebellon, L., Hoyos, L., Gonza-les, S., Barrena, R., Komilis, D., Sanchez, A.: Stability and maturity of biowaste com-posts derived by small municipalities: Correlation among physical, chemical and biological indices. Waste Manag. 44, 63–71 (2015)

    Article  CAS  Google Scholar 

  140. Ponsa, S., Gea, T., Alerm, L., Cerezo, J., Sanchez, A.: Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 28, 2735–2742 (2008)

    Article  CAS  Google Scholar 

  141. Sanchez-Arias, V., Fernandez, F.J., Rodriguez, L., Villasenor, J.: Respiration indices and stability measurements of compost through electrolytic respirometry. J. Environ. Manage. 95, S134–S138 (2012)

    Article  CAS  Google Scholar 

  142. Adani, F., Lozzi, P., Genevini, P.: Determination of biological stability by oxygen uptake on municipal solid waste and derived products. Compost Sci. Util. 9, 163–178 (2001)

    Article  Google Scholar 

  143. Adani, F., Confalonieri, R., Tambone, F.: Dynamic respiration index as a descriptor of the biological stability of organic wastes. J. Environ. Qual. 33, 1866–1876 (2004)

    Article  CAS  Google Scholar 

  144. Adani, F., Ubbiali, C., Genevini, P.: The determination of biological stability of composts using the dynamic respiration index: the results of experience after two years. Waste Manag. 26, 41–48 (2006)

    Article  CAS  Google Scholar 

  145. Almeira, N., Komilis, D., Barrena, R., Gea, T., Sanchez, A.: The importance of aeration mode and flowrate in the determination of the biological activity and stability of organic wastes by respiration indices. Biores. Technol. 196, 256–262 (2015)

    Article  CAS  Google Scholar 

  146. Antognoni, S., Ragazzi, M., Ionescu, G., Passamani, G., Zanoni, S., Rada, E.: Respirometric index as a tool for biogas generation production from poultry manure. Manag. Env. Qual. Int. J. 27, 269–280 (2016)

    Article  Google Scholar 

  147. Berthe, L., Druilhe, C., Massiani, C., Tremier, A., de Guardia, A.: Coupling a respirometer and a pycnometer, to study the biodegradability of solid organic wastes during composting. Biosys. Eng. 97, 75–88 (2007)

    Article  Google Scholar 

  148. Ciuta, S., Antognoni, S., Rada, E., Ragazzi, M., Badea, A., Cioca, L.: Respirometric index and biogas potential of different foods and agricultural discarded biomass. Sustainability 8(311), 1 (2016)

    Google Scholar 

  149. Colon, J., Ponsa, S., Alvarez, C., Vinot, M., Lafuente, F., Gabriel, D., Sanchez, A.: Analysis of MSW full-scale facilities based on anaerobic digestion and/or composting using respiration indices as performance indicators. Biores. Technol. 236, 87–96 (2017)

    Article  CAS  Google Scholar 

  150. Ferrari, D., Howell, G., Aspray, T.: Improved precision and efficiency of a modified ORG0020 dynamic respiration test setup for compost stability assessment. Sustainability 9, 2358 (2017)

    Article  CAS  Google Scholar 

  151. Komilis, D., Kanellos, D.: A modified dynamic respiration test to assay compost stability: effect of sample size and air flowrate. Biores. Technol. 117, 300–309 (2012)

    Article  CAS  Google Scholar 

  152. Mejias, L., Komilis, D., Gea, T., Sanchez, A.: The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: implications on the com-posting process. Waste Manag. 65, 22–28 (2017)

    Article  CAS  Google Scholar 

  153. Ponsa, S., Gea, T., Sanchez, A.: Different indices to express biodegradability in organic solid wastes. J. Environ. Qual. 39, 706–712 (2010)

    Article  CAS  Google Scholar 

  154. Ponsa, S., Puyuelo, B., Gea, T., Sanchez, A.: Modelling the aerobic degradation of organic wastes based on slowly and rapidly degradable fractions. Waste Manag. 31, 1472–1479 (2011)

    Article  CAS  Google Scholar 

  155. Scaglia, B., Confalonieri, R., d’Imporzano, G., Adani, F.: Estimating biogas production of biologically treated municipal solid waste. Biores. Technol. 101, 945–952 (2010)

    Article  CAS  Google Scholar 

  156. Scaglia, B., Acutis, M., Adani, F.: Precision determination for the dynamic respirometric index (DRI) method used for biological stability evaluation on municipal solid waste and derived products. Waste Manag. 31, 2–9 (2011)

    Article  Google Scholar 

  157. Trémier, A., de Guardia, A., Massiani, C., Paul, E., Martel, J.: A respirometric method for characterizing the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be composted. Bioresour. Technol. 96, 169–180 (2005)

    Article  CAS  Google Scholar 

  158. Wagland, S.T., Tyrrel, S.F., Godley, A., Smith, R.: Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Manag. 29, 1218–1226 (2009)

    Article  CAS  Google Scholar 

  159. Lasaridi, K., Papadimitriou, E., Balis, C.: Development and demonstration of a thermogradient respirometer. Compost Sci. Util. 4, 53–61 (1996)

    Article  Google Scholar 

  160. Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.: Activated Sludge Models ASM1, ASM2, ASM2D and ASM3. IWA Publishing, Londre (2000)

    Google Scholar 

  161. Rosso, L., Lobry, J.R., Bajard, S., Flandrois, J.P.: Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61, 610–616 (1995)

    Article  CAS  Google Scholar 

  162. Rosso, L., Lobry, J.R., Flandrois, J.P.: An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J. Theor. Biol. 162, 447–463 (1993)

    Article  CAS  Google Scholar 

  163. Haug, R.: The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton, FL (1993)

    Google Scholar 

  164. Lomander, A., Katterer, T., Andren, O.: Modelling the effects of temperature and moisture on CO2 evolution from top- and subsoil using a multi-compartment approach. Soil Biol. Biochem. 30, 2023–2030 (1998)

    Article  CAS  Google Scholar 

  165. Pommier, S., Chenu, D., Quintard, M., Lefebvre, X.: Modelling of moisture-dependent aerobic degradation of solid waste. Waste Manag. 28, 1188–1200 (2008)

    Article  CAS  Google Scholar 

  166. Richard, T.L., Hamelers, H.V.M., Veeken, A., Silva, T.: Moisture relationships in composting processes. Compost Sci. Util. 10, 286–302 (2002)

    Article  Google Scholar 

  167. Stombaugh, D.P., Nokes, S.E.: Development of a biologically based aerobic com-posting simulation model. Trans. ASAE 39, 239–250 (1996)

    Article  Google Scholar 

  168. Mason, I.G.: Mathematical modelling of the composting process: a review. Waste Manag. 26, 3–21 (2006)

    Article  CAS  Google Scholar 

  169. Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., et al.: Soil carbon 4 per mille. Geoderma 292, 59–86 (2017)

    Article  Google Scholar 

  170. Houot, S., Pons, M.N., Pradel, M.: Valorisation des matières fertilisantes d’origine résiduaire sur les sols à usage agricole ou forestier. In: Expertise collective INRA-CNRS-IRSTEA, INRA-CNRS-IRSTEA (2014)

    Google Scholar 

  171. Lashermes, G., Nicolardot, B., Parnaudeau, V., Thuries, L., Chaussod, R., Guil-lotin, M.L., Lineres, M., et al.: Indicator of potential residual carbon in soils after exogenous organic matter application. Eur. J. Soil Sci. 60, 297–310 (2009)

    Article  CAS  Google Scholar 

  172. Jimenez, J., Lei, H., Steyer, J.P., Houot, S., Patureau, D.: Methane production and fertilizing value of organic waste: organic matter characterization for a better prediction of valorization pathways. Biores. Technol. 241, 1012–1021 (2017)

    Article  CAS  Google Scholar 

  173. AFNOR, XPU 44-163: Amendements organiques et supports de culture—Caractérisation de la matière organique par la minéralisation potentielle du carbone et de l’azote (2009)

    Google Scholar 

  174. Peltre, C., Dignac, M.F., Derenne, S., Houot, S.: Change of the chemical composition and biodegradability of the Van Soest soluble fraction during composting: a study using a novel extraction method. Waste Manag. 30, 2448–2460 (2010)

    Article  CAS  Google Scholar 

  175. Grigatti, M., Di Girolamo, G., Chincarini, R., Ciavatta, C., Barbanti, L.: Potential nitrogen mineralization, plant utilization efficiency and soil CO2 emissions following the addition of anaerobic digested slurries. Biomass Bioenerg. 35, 4619–4629 (2011)

    Article  CAS  Google Scholar 

  176. Grigatti, M., Boanini, E., Cavani, L., Ciavatta, C., Marzadori, C.: Phosphorus in digestate-based compost: chemical speciation and plant-availability. Waste Biomass Valori. 6, 481–493 (2015)

    Article  CAS  Google Scholar 

  177. Morvan, T., Nicolardot, B., Pean, L.: Biochemical composition and kinetics of C and N mineralization of animal wastes: a typological approach. Biol. Fertil. Soils 42, 513–522 (2006)

    Article  Google Scholar 

  178. AFNOR, NF: U44-110: Boues-Amendements organiques-Supports de culture-Préparation des échantillons partiellement secs pour essai. Expression des résultats (1982)

    Google Scholar 

  179. Lashermes, G., Nicolardot, B., Parnaudeau, V., Thuries, L., Chaussod, R., Guillotin, M.L., Lineres, M., et al.: Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization. Biores. Technol. 101, 157–164 (2010)

    CAS  Google Scholar 

  180. Morvan, T., Nicolardot, B.: Role of organic fractions on C decomposition and N mineralization of animal wastes in soil. Biol. Fertil. Soils 45, 477–486 (2009)

    Article  Google Scholar 

  181. Thuries, L., Pansu, M., Feller, C., Herrmann, P., Remy, J.C.: Kinetics of added organic matter decomposition in a Mediterranean sandy soil. Soil Biol. Biochem. 33, 997–1010 (2001)

    Article  CAS  Google Scholar 

  182. Recous, S., Robin, D., Darwis, D., Mary, B.: Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem. 27, 1529–1538 (1995)

    Article  CAS  Google Scholar 

  183. Alavoine, G., Nicolardot, B.: Comparison of potentiometric titration, IR spectrophotometry and segmented micro-flow analysis to determine inorganic C in alkaline solutions. Anal. Bioanal. Chem. 374, 354–358 (2002)

    Article  CAS  Google Scholar 

  184. Zibilske, L.M.: Carbon mineralization. In: Angle, J.S., Bottomley, P.S., Weaver, R.W. (eds.) Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties, pp. 835–863. ASA-SSSA, Madison, WI (1994)

    Google Scholar 

  185. Houot, S.: Laboratory characterization of organic waste produced in the laboratory to predict their behavior in the field. ADEME (2016)

    Google Scholar 

  186. Henriksen, A., Selmerol, A.: Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95, 514–518 (1970)

    Article  CAS  Google Scholar 

  187. Thuries, L., Pansu, M., Larre-Larrouy, M.C., Feller, C.: Biochemical composition and mineralization kinetics of organic inputs in a sandy soil. Soil Biol. Biochem. 34, 239–250 (2002)

    Article  CAS  Google Scholar 

  188. Van Soest, P.: Use of detergents in the analysis of fibrous feeds: II. A rapid method for the determination of fibre and lignin. J. Assoc. Off. Anal. Chem. 46, 829–835 (1963)

    Google Scholar 

  189. Nicolardot, B., Recous, S., Mary, B.: Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 228, 83–103 (2001)

    Article  CAS  Google Scholar 

  190. Garnier, P., Neel, C., Aita, C., Recous, S., Lafolie, F., Mary, B.: Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur. J. Soil Sci. 54, 555–568 (2003)

    Article  CAS  Google Scholar 

  191. Peltre, C., Thuries, L., Barthes, B., Brunet, D., Morvan, T., Nicolardot, B., Parnaudeau, V., Houot, S.: Near infrared reflectance spectroscopy: a tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil. Soil Biol. Biochem. 43, 197–205 (2011)

    Article  CAS  Google Scholar 

  192. Bekiaris, G., Bruun, S., Peltre, C., Houot, S., Jensen, L.S.: FTIR-PAS: a powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste Manag. 39, 45–56 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Carrère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrère, H. et al. (2020). Methods to Assess Biological Transformation of Biomass. In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_5

Download citation

Publish with us

Policies and ethics